Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Neurosci ; 24(1): 69, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124101

RESUMO

According to recent research, selective neuronal vulnerability in Parkinson's disease (PD) results from several phenotypic traits, including calcium-dependent, feed-forward control of mitochondrial respiration leading to elevated reactive oxygen species and cytosolic calcium concentration, an extensive axonal arbor, and a reactive neurotransmitter. Therefore, antioxidant therapy is a promising direction in the treatment of PD. In vitro studies have indicated the survival-promoting activity of bacterial melanin (BM) on midbrain dopaminergic neuron cultures. It has been established that BM has a number of protective and anti-inflammatory properties, so there is a high probability of a protective effect of BM in the early stages of PD. In this study, PD was induced through the unilateral intracerebral administration of rotenone followed by bacterial melanin. Tissues (brain, lungs, and small intestine) from the observed groups underwent isolation and purification to extract isoforms of new thermostable superoxide (О2-)-producing associates between NADPH-containing lipoprotein (NLP) and NADPH oxidase-Nox (NLP-Nox). The optical absorption spectral characteristics, specific amounts, stationary concentration of the produced О2-, and the content of NADPH in the observed associates were determined. The optical absorption spectra of the NLP-Nox isoforms in the visible and UV regions in the experimental groups did not differ from those of the control group. However, compared with the control group, the specific content of the total fractions of NLP-Nox isoforms associated with PD groups was higher, especially in the small intestine. These findings suggest that the described changes may represent a novel mechanism for rotenone-induced PD. Furthermore, bacterial melanin demonstrated antioxidant properties and regulated membrane formation in the brain, lung, and small intestine. This regulation occurred by inhibiting the release of new membrane-bound formations (NLP-Nox associates) from these membranes while simultaneously regulating the steady-state concentration of the formed О2-.


Assuntos
Doença de Parkinson , Superóxidos , Ratos , Animais , Superóxidos/farmacologia , Rotenona/farmacologia , Melaninas/farmacologia , Antioxidantes/farmacologia , NADP/farmacologia , Cálcio , Neurônios Dopaminérgicos
2.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499771

RESUMO

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder and warrants further study as well as timely treatment. Additionally, the mechanisms of the brain's intrinsic defense against chronic injury are not yet fully understood. Herein, we examined the response of the main neurogenic niches to amyloid exposure and the associated changes in structure and synaptic activity. Flow cytometry of Nestin-, Vimentin-, Nestin/Vimentin-, NeuN-, GFAP-, NeuN/GFAP-, NSE-, BrdU-, Wnt-, BrdU/Wnt-, VEGF-, Sox14-, VEGF/Sox14-, Sox10-, Sox2-, Sox10/Sox2-, Bax-, and Bcl-xL-positive cells was performed in the subventricular zone (SVZ), hippocampus, and cerebral cortex of rat brains on 90th day after intracerebroventricular (i.c.v.) single injection of a fraction of ß-amyloid (Aß) (1-42). The relative structural changes in these areas and disruptions to synaptic activity in the entorhinal cortex-hippocampus circuit were also evaluated. Our flow analyses revealed a reduction in the numbers of Nestin-, Vimentin-, and Nestin/Vimentin-positive cells in neurogenic niches and the olfactory bulb. These changes were accompanied by an increased number of BrdU-positive cells in the hippocampus and SVZ. The latter changes were strongly correlated with changes in the numbers of VEGF- and VEGF/Sox14-positive cells. The morphological changes were characterized by significant neural loss, a characteristic shift in entorhinal cortex-hippocampus circuit activity, and decreased spontaneous alternation in a behavioral test. We conclude that although an injection of Aß (1-42) induced stem cell proliferation and triggered neurogenesis at a certain stage, this process was incomplete and led to neural stem cell immaturity. We propose the idea of enhancing adult neurogenesis as a promising strategy for preventing dementia at healthy elderly people andpeople at high risk for developing AD, or treating patients diagnosed with AD.


Assuntos
Doença de Alzheimer , Fator A de Crescimento do Endotélio Vascular , Animais , Ratos , Fator A de Crescimento do Endotélio Vascular/farmacologia , Neurogênese , Peptídeos beta-Amiloides/farmacologia , Encéfalo , Hipocampo , Bromodesoxiuridina/farmacologia , Proteínas Amiloidogênicas/farmacologia
3.
Sci Rep ; 11(1): 23471, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873263

RESUMO

Autism spectrum disorders (ASD) are neurodevelopmental disorders, that are characterized by core symptoms, such as alterations of social communication and restrictive or repetitive behavior. The etiology and pathophysiology of disease is still unknown, however, there is a strong interaction between genetic and environmental factors. An intriguing point in autism research is identification the vulnerable time periods of brain development that lack compensatory homeostatic corrections. Valproic acid (VPA) is an antiepileptic drug with a pronounced teratogenic effect associated with a high risk of ASD, and its administration to rats during the gestation is used for autism modeling. It has been hypothesized that valproate induced damage and functional alterations of autism target structures may occur and evolve during early postnatal life. Here, we used prenatal and postnatal administrations of VPA to investigate the main behavioral features which are associated with autism spectrum disorders core symptoms were tested in early juvenile and adult rats. Neuroanatomical lesion of autism target structures and electrophysiological studies in specific neural circuits. Our results showed that prenatal and early postnatal administration of valproate led to the behavioral alterations that were similar to ASD. Postnatally treated group showed tendency to normalize in adulthood. We found pronounced structural changes in the brain target regions of prenatally VPA-treated groups, and an absence of abnormalities in postnatally VPA-treated groups, which confirmed the different severity of VPA across different stages of brain development. The results of this study clearly show time dependent effect of VPA on neurodevelopment, which might be explained by temporal differences of brain regions' development process. Presumably, postnatal administration of valproate leads to the dysfunction of synaptic networks that is recovered during the lifespan, due to the brain plasticity and compensatory ability of circuit refinement. Therefore, investigations of compensatory homeostatic mechanisms activated after VPA administration and directed to eliminate the defects in postnatal brain, may elucidate strategies to improve the course of disease.


Assuntos
Anticonvulsivantes/efeitos adversos , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/fisiopatologia , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/fisiopatologia , Ácido Valproico/efeitos adversos , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Feminino , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ratos , Ratos Sprague-Dawley , Comportamento Social
4.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209299

RESUMO

Alzheimer's disease (AD)-associated neurodegeneration is triggered by different fragments of amyloid beta (Aß). Among them, Aß (25-35) fragment plays a critical role in the development of neurodegeneration-it reduces synaptic integrity by disruption of excitatory/inhibitory ratio across networks and alters the growth factors synthesis. Thus, in this study, we aimed to identify the involvement of neurotrophic factors-the insulin-like growth factor 1 (IGF-1) and nerve growth factor (NGF)-of AD-like neurodegeneration induced by Aß (25-35). Taking into account our previous findings on the neuroprotective effects of the mix of proteoglycans of embryonic genesis (PEG), it was suggested to test its regulatory effect on IGF-1 and NGF levels. To evaluate the progress of neurodegeneration, in vivo electrophysiological investigation of synaptic activity disruption of the entorhinal cortex-hippocampus circuit at AD was performed and the potential recovery effects of PEG with relative structural changes were provided. To reveal the direct effects of PEG on brain functional activity, the electrophysiological pattern of the single cells from nucleus supraopticus, sensomotor cortex and hippocampus after acute injection of PEG was examined. Our results demonstrated that after i.c.v. injection of Aß (25-35), the level of NGF decreased in cerebral cortex and hypothalamus, and, in contrast, increased in hippocampus, prompting its multidirectional role in case of brain damage. The concentration of IGF-1 significantly increased in all investigated brain structures. The administration of PEG balanced the growth factor levels accompanied by substantial restoration of neural tissue architecture and synaptic activity. Acute injection of PEG activated the hypothalamic nucleus supraopticus and hippocampal neurons. IGF-1 and NGF levels were found to be elevated in animals receiving PEG in an absence of amyloid exposure. We suggest that IGF-1 and NGF play a critical role in the development of AD. At the same time, it becomes clear that the neuroprotective effects of PEG are likely mediated via the regulation of neurotrophins.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/metabolismo , Encéfalo , Eletrocardiografia , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Neural/metabolismo , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley
5.
Neurochem Int ; 140: 104838, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32853753

RESUMO

Using the rat Alzheimer's disease (AD)-like model we have analyzed the hippocampal short-term potentiation, levels of monoamines, and morphological changes in the hippocampal and cortical neurons after the administration of proteoglycans of embryonic origin (PEG). Results showed that the levels of monoamines and especially norepinephrine in the target AD brain structures were found elevated, except serotonin, which was unaffected in the hippocampus, but decreased in the frontal cortex. These changes were accompanied by the substantial structural damage of cortical and hippocampal neurons. PEG was able to reverse most of these changes. In addition, PEG administration had regime-dependent effects on a short-term potentiation pattern of hippocampal neurons. The elevated levels of key elements of brain monoaminergic system in the model of AD support the hypothesis of the important role of monoamines in the excessive synaptic excitation resulting in cognitive dysfunction in AD brain. The neuroprotective effect of PEG, as manifested by the recovery of the monoaminergic system, suggests this bioactive substance as a perspective therapeutic agent for the treatment of AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/toxicidade , Lobo Frontal/metabolismo , Hipocampo/metabolismo , Fragmentos de Peptídeos/toxicidade , Proteoglicanas/administração & dosagem , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Animais , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/patologia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Masculino , Proteoglicanas/isolamento & purificação , Ratos , Ratos Sprague-Dawley
6.
Neurochem Int ; 131: 104531, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31425747

RESUMO

Alzheimer's disease (AD) pathogenesis includes oxidative damage and perturbations of monoamines. However, as many details of these alterations are not known, we have investigated the changes in monoamine levels as well as the free radical oxidation processes (FRO) in the brainstem of rats that were administered i.c.v. Aß (25-35) (rat model of AD-like pathology). The level of oxidative stress was found elevated in the brainstem along with the increased concentrations of monoamines, especially norepinephrine in the locus coeruleus (LC) area of the brainstem. This was accompanied by the substantial structural damage of monoaminergic neurons of LC. In addition, we have tested the ability of proteoglycans of embryonic genesis (PEG) that were shown previously to act as neuroprotectors, to restore the AD-triggered alterations in monoaminergic system and FRO. Indeed, PEG reduced the increased FRO and upregulated monoamines in the brainstem of Aß (25-35) treated animals. Administration of PEG to control animals led to the increase of the antioxidant capacity as well as the intensity of free radical oxidation processes. Our study confirms the important role of the brainstem FRO and monoamine shifts in AD development along with the known aggregation of Ab peptide and Tau hyperphosphorylation. We suggest that at the early stages of AD development, with still functional neurons, regulation of monoamine levels via stabilizing FRO processes can be beneficial. Our data demonstrate the regulatory action of PEG on the monoamine disturbances and the level of oxidative stress in the AD damaged structures, suggesting its possible therapeutic application in AD.


Assuntos
Doença de Alzheimer/patologia , Monoaminas Biogênicas/metabolismo , Desenvolvimento Embrionário , Locus Cerúleo/metabolismo , Neurônios/metabolismo , Estresse Oxidativo , Proteoglicanas/metabolismo , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides , Animais , Tronco Encefálico/metabolismo , Feminino , Radicais Livres/metabolismo , Locus Cerúleo/patologia , Masculino , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos , Fosforilação , Gravidez , Ratos , Ratos Sprague-Dawley , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...