Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 104(6-7): 1017-1034, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12582608

RESUMO

A composite genetic melon map was generated based on two recombinant inbred line (RI) populations. By analyzing the segregation of 346 AFLPs, 113 IMAs and phenotypic characters on a RI population of 163 individuals derived from the cross Védrantais x PI 161375, a first map was constructed. About 20% of the molecular markers were skewed, and the residual heterozygosity was estimated at 4.43% which was not significantly different from the theoretical value of 4.2%. The genome distribution of molecular markers among the 12 linkage groups was not different from a random distribution with the exception of linkage group XII which was found significantly less populated. The genome distributions of IMAs and AFLPs were complementary. AFLPs were found mainly in the middle of each linkage group and sometimes clustered, whereas IMAs were found mainly at the end. A total of 318 molecular markers, mainly AFLP and IMA markers, were mapped on 63 RIs of the second population, Védrantais x PI 414723. Comparison of the maps enables one to conclude that AFLPs and IMAs of like molecular size, amplified with the same primer combination, correspond to the same genetic locus. Both maps were joined through 116 common markers comprising 106 comigrating AFLPs/IMAs, plus five SSRs and five phenotypic markers. The integrated melon map contained 668 loci issuing from the segregation of 1,093 molecular markers in the two RI populations. The composite map spanned 1,654 cM on 12 linkage groups which is the haploid number of chromosomes in melon. Thirty two known-function probes, i.e. known-function genes (9) and morphological traits (23), were included in this map. In addition, the composite map was anchored to previously published maps through SSRs, RFLPs and phenotypic characters.

2.
Genome ; 43(6): 963-74, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11195350

RESUMO

Thirty-four polymorphic simple-sequence repeats (SSRs) were evaluated for length polymorphism in melon (Cucumis melo L.) and cucumber (Cucumis sativus L.). SSR markers were located on three melon maps (18 on the map of 'Vedrantais' and PI 161375, 23 on the map of 'Piel de Sapo' and PI 161375, and 16 on the map of PI 414723 and 'Dulce'). In addition, 14 of the markers were located on the cucumber map of GY14 and PI 183967. SSRs proved to be randomly distributed throughout the melon and cucumber genomes. Mapping of the SSRs in the different maps led to the cross-identification of seven linkage groups in all melon maps. In addition, nine SSRs were common to both melon and cucumber maps. The potential of SSR markers as anchor points for melon-map merging and for comparative mapping with cucumber was demonstrated.


Assuntos
Cucumis sativus/genética , Repetições de Microssatélites/genética , Sequências Repetitivas de Ácido Nucleico/genética , Mapeamento Cromossômico , Cromossomos , Cucurbitaceae/genética , Amplificação de Genes , Genoma de Planta , Polimorfismo Genético
3.
Theor Appl Genet ; 93(8): 1282-90, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24162541

RESUMO

The objectives of this research were to assess (1) the degree of Simple Sequence Repeats (SSR) DNA length polymorphism in melon (Cucumis melo L.) and other species within the Cucurbitaceae family and (2) the possibility of utilizing SSRs flanking primers from single species to other genera or species of Cucurbitaceae. Five melon (CT/GA) n SSRs were isolated from a genomic library. Two cucumber (Cucumis sativus L.) SSRs were detected through a search of DNA sequence databases, one contained a (CT)8 repeat, the other a (AT)13 repeat. The seven SSRs were used to test a diverse sample of Cucurbitaceae, including 8 melon, 11 cucumber, 5 squash, 1 pumpkin, and 3 watermelon genotypes. Five of the seven SSRs detected length polymorphism among the 8 melon genotypes. PCR amplification revealed between three and five length variants (alleles) for each SSR locus, with gene diversity values ranging from 0.53 to 0.75. Codominant segregation of the alleles among F2 progeny was demonstrated for each of the five SSR loci. Four of the seven SSRs detected polymorphism among the 11 cucumber genotypes, with gene diversity values ranging between 0.18 and 0.64. Primers specific to SSRs of C. melo and C. sativus also amplified DNA extracted from genotypes belonging to other genera of the Cucurbitaceae family.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...