Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 19038, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352248

RESUMO

Insufficient homogeneity is one of the pressing problems in nanocomposites' production as it largely impairs the properties of materials with relatively high filler concentration. Within this work, it is demonstrated how selected mixing techniques (magnetic mixer stirring, calendaring and microfluidization) affect filler distribution in poly(dimethylsiloxane)-graphene based nanocomposites and, consequently, their properties. The differences were assessed via imaging and thermal techniques, i.a. Raman spectroscopy, differential scanning calorimetry and thermogravimetry. As microfluidization proved to provide the best homogenization, it was used to prepare nanocomposites of different filler concentration, whose structural and thermal properties were investigated. The results show that the concentration of graphene significantly affects polymer chain mobility, grain sizes, defect density and cross-linking level. Both factors considered in this work considerably influence thermal stability and other features which are crucial for application in electronics, EMI shielding, thermal interface materials etc.


Assuntos
Grafite , Nanocompostos , Grafite/química , Nanocompostos/química , Termogravimetria , Polímeros/química , Varredura Diferencial de Calorimetria
2.
Sci Rep ; 12(1): 13104, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907934

RESUMO

Polymer composites with high dielectric constant and low loss tangent are highly regarded as substrates for modern high-speed electronics. In this work, we analyze the high-frequency dielectric properties of two types of composites based on polypropylene infused with high-dielectric-constant microparticles. Two types of fillers are used: commercial ceramics or titanium oxide (TiO2) with different concentrations. The key observation is that adding the fillers causes an increase of dielectric constants by around 100% (for highest loading) up to 4.2 and 3.4, for micro-ceramics and TiO2 based composites, respectively. Interestingly, for the TiO2 composite, the loss tangent depends on the filler loading volume, whereas the other composite has a slightly increasing tendency, however, being at the level ~ 10-3. To explain the experimental results, a theoretical model determined by microwave reflection and transmission through a representative volume element is proposed, which allows the investigation of the impact of volume ratio, grain shape, aggregation, and size on the loss tangent and permittivity evolution. This approach could be used for modeling other low dielectric loss materials with inclusions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...