Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Methods ; 16(26): 4310-4321, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38888190

RESUMO

The main objective of this study was to design, build, and test a compact, multi-well, portable dry film FTIR system for industrial food and bioprocess applications. The system features dry film sampling on a circular rotating disc comprising 31 wells, a design that was chosen to simplify potential automation and robotic sample handling at a later stage. Calibration models for average molecular weight (AMW, 200 samples) and collagen content (68 samples) were developed from the measurements of industrially produced protein hydrolysate samples in a controlled laboratory environment. Similarly, calibration models for the prediction of lactate content in samples from cultivation media (59 samples) were also developed. The portable dry film FTIR system showed reliable model characteristics which were benchmarked with a benchtop FTIR system. Subsequently, the portable dry film FTIR system was deployed in a bioprocessing plant, and protein hydrolysate samples were measured at-line in an industrial environment. This industrial testing involved building a calibration model for predicting AMW using 60 protein hydrolysate samples measured at-line using the portable dry film FTIR system and subsequent model validation using a test set of 26 samples. The industrial calibration in terms of coefficient of determination (R2 = 0.94), root mean square of cross-validation (RMSECV = 194 g mol-1), and root mean square of prediction (RMSEP = 162 g mol-1) demonstrated low prediction errors as compared to benchtop FTIR measurements, with no statistical difference between the calibration models of the two FTIR systems. This is to the authors' knowledge the first study for developing and employing a portable dry film FTIR system in the enzymatic protein hydrolysis industry for successful at-line measurements of protein hydrolysate samples. The study therefore suggests that the portable dry film FTIR instrument has huge potential for in/at-line applications in the food and bioprocessing industries.


Assuntos
Hidrolisados de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Hidrolisados de Proteína/análise , Hidrolisados de Proteína/química , Calibragem , Peso Molecular , Colágeno/química , Colágeno/análise
2.
Anal Chim Acta ; 1284: 342005, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37996160

RESUMO

It is important to utilize the entire animal in meat and fish production to ensure sustainability. Rest raw materials, such as bones, heads, trimmings, and skin, contain essential nutrients that can be transformed into high-value products. Enzymatic protein hydrolysis (EPH) is a bioprocess that can upcycle these materials to create valuable proteins and fats. This paper focuses on the role of spectroscopy and chemometrics in characterizing the quality of the resulting protein product and understanding how raw material quality and processing affect it. The article presents recent developments in chemical characterisation and process modelling, with a focus on rest raw materials from poultry and salmon production. Even if some of the technology is relatively mature and implemented in many laboratories and industries, there are still open challenges and research questions. The main challenges are related to the transition of technology and insights from laboratory to industrial scale, and the link between peptide composition and critical product quality attributes.


Assuntos
Quimiometria , Proteínas , Animais , Peptídeos/química , Tecnologia , Indústria Alimentícia
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 301: 122919, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295376

RESUMO

Fourier transform infrared spectroscopy (FTIR) is a powerful analytical tool that has been used for protein and peptide characterization for decades. In the present study, the objective was to investigate if FTIR can be used to predict collagen content in hydrolyzed protein samples. All samples were obtained from enzymatic protein hydrolysis (EPH) of poultry by-products providing a span in collagen content from 0.3% to 37.9% (dry weight), and the FTIR analysis was performed using dry film FTIR. Since nonlinear effects were revealed by calibration using standard partial least squares (PLS) regression, Hierarchical Cluster-based PLS (HC-PLS) calibration models were constructed. The HC-PLS model provided a low prediction error when validated using an independent test set (RMSE = 3.3% collagen), while validation using real industrial samples also showed satisfying results (RMSE = 3.2%). The results corresponded well with previously published FTIR-based studies of collagen, and characteristic spectral features for collagen were well identified in the regression models. Covariance between collagen content and other EPH related processing parameters could also be ruled out in the regression models. To the authors' knowledge, this is the first time that collagen content has been systematically studied in solutions of hydrolysed proteins using FTIR. This is also one of few examples where FTIR is successfully used to quantify protein composition. The dry-film FTIR approach presented in the study is expected to be an important tool in the growing industrial segment that is based on sustainable utilization of collagen-rich biomass.


Assuntos
Colágeno , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise dos Mínimos Quadrados
4.
Foods ; 12(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36900546

RESUMO

Quality testing in the food industry is usually performed by manual sampling and at/off-line laboratory analysis, which is labor intensive, time consuming, and may suffer from sampling bias. For many quality attributes such as fat, water and protein, in-line near-infrared spectroscopy (NIRS) is a viable alternative to grab sampling. The aim of this paper is to document some of the benefits of in-line measurements at the industrial scale, including higher precision of batch estimates and improved process understanding. Specifically, we show how the decomposition of continuous measurements in the frequency domain, using power spectral density (PSD), may give a useful view of the process and serve as a diagnostic tool. The results are based on a case regarding the large-scale production of Gouda-type cheese, where in-line NIRS was implemented to replace traditional laboratory measurements. In conclusion, the PSD of in-line NIR predictions revealed unknown sources of variation in the process that could not have been discovered using grab sampling. PSD also gave the dairy more reliable data on key quality attributes, and laid the foundation for future improvements.

5.
Foods ; 11(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35407049

RESUMO

The aim of the present study was to critically evaluate the potential of using NIR and Raman spectroscopy for prediction of fatty acid features and single fatty acids in salmon muscle. The study was based on 618 homogenized salmon muscle samples acquired from Atlantic salmon representing a one year-class nucleus, fed the same high fish oil feed. NIR and Raman spectra were used to make regression models for fatty acid features and single fatty acids measured by gas chromatography. The predictive performance of both NIR and Raman was good for most fatty acids, with R2 above 0.6. Overall, Raman performed marginally better than NIR, and since the Raman models generally required fewer components than respective NIR models to reach high and optimal performance, Raman is likely more robust for measuring fatty acids compared to NIR. The fatty acids of the salmon samples co-varied to a large extent, a feature that was exacerbated by the overlapping peaks in NIR and Raman spectra. Thus, the fatty acid related variation of the spectroscopic data of the present study can be explained by only a few independent principal components. For the Raman spectra, this variation was dominated by functional groups originating from long-chain polyunsaturated FAs like EPA and DHA. By exploring the independent EPA and DHA Raman models, spectral signatures similar to the respective pure fatty acids could be seen. This proves the potential of Raman spectroscopy for single fatty acid prediction in muscle tissue.

6.
Food Chem ; 382: 132201, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35158275

RESUMO

Enzymatic protein hydrolysis (EPH) is an invaluable process to increase the value of food processing by-products. In the current work the aim was to study the role of standard thermal inactivation in collagen solubilization during EPH of poultry by-products. Hundred and eighty hydrolysates were produced using two proteases (stem Bromelain and Endocut-02) and two collagen-rich poultry by-products (turkey tendons and carcasses). Thermal inactivation was performed with and without the sediment to study the effect of heat on collagen solubilization. A large difference in molecular weight distribution profiles was observed when comparing hydrolysate time series of the two proteases. In addition, it was shown that 15 min heat treatment, conventionally used for inactivating proteases, is essential in solubilizing collagen fragments, which significantly contributes to increasing the protein yield of the entire process. The study thus demonstrated the possibility of producing tailored products of different quality by exploiting standard heat inactivation in EPH.


Assuntos
Temperatura Alta , Aves Domésticas , Animais , Colágeno/metabolismo , Hidrólise , Produtos Avícolas , Hidrolisados de Proteína/química
7.
Molecules ; 26(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34500712

RESUMO

A study of the effects of single and combined protease hydrolysis on myofibrillar versus collagenous proteins of poultry by-products has been conducted. The aim was to contribute with knowledge for increased value creation of all constituents of these complex by-products. A rational approach was implemented for selecting proteases exhibiting the most different activity towards the major protein-rich constituents of mechanically deboned chicken residue (MDCR). An initial activity screening of 18 proteases on chicken meat, turkey tendons and MDCR was conducted. Based on weight yield, size exclusion chromatography (SEC) and SDS-PAGE, stem Bromelain and Endocut-02 were selected. Studies on hydrolysis of four different poultry by-products at 40 °C, evaluated by protein yield, SEC, and SDS-PAGE, indicate that the proteases' selectivity difference can be utilized in tailor-making hydrolysates, enriched in either meat- and collagen-derived peptides or gelatin. Three modes of stem Bromelain and Endocut-02 combinations during hydrolysis of MDCR were performed and compared with single protease hydrolysis. All modes of the protease combinations resulted in a similar approximately 15% increase in product yield, with products exhibiting similar SEC and SDS-PAGE profiles. This shows that irrespective of the modes of combination, the use of more than one enzyme in hydrolysis of collagen-rich material can provide means to increase the total protein yield and ultimately contribute to increased value creation of poultry by-products.


Assuntos
Bromelaínas/química , Peptídeo Hidrolases/metabolismo , Animais , Galinhas , Eletroforese em Gel de Poliacrilamida , Temperatura
8.
Genet Sel Evol ; 53(1): 12, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33546581

RESUMO

BACKGROUND: Product quality and production efficiency of Atlantic salmon are, to a large extent, influenced by the deposition and depletion of lipid reserves. Fillet lipid content is a heritable trait and is unfavourably correlated with growth, thus genetic management of fillet lipid content is needed for sustained genetic progress in these two traits. The laboratory-based reference method for recording fillet lipid content is highly accurate and precise but, at the same time, expensive, time-consuming, and destructive. Here, we test the use of rapid and cheaper vibrational spectroscopy methods, namely near-infrared (NIR) and Raman spectroscopy both as individual phenotypes and phenotypic predictors of lipid content in Atlantic salmon. RESULTS: Remarkably, 827 of the 1500 individual Raman variables (i.e. Raman shifts) of the Raman spectrum were significantly heritable (heritability (h2) ranging from 0.15 to 0.65). Similarly, 407 of the 2696 NIR spectral landscape variables (i.e. wavelengths) were significantly heritable (h2 = 0.27-0.40). Both Raman and NIR spectral landscapes had significantly heritable regions, which are also informative in spectroscopic predictions of lipid content. Partial least square predicted lipid content using Raman and NIR spectra were highly concordant and highly genetically correlated with the lipid content values ([Formula: see text] = 0.91-0.98) obtained with the reference method using Lin's concordance correlation coefficient (CCC = 0.63-0.90), and were significantly heritable ([Formula: see text] = 0.52-0.67). CONCLUSIONS: Both NIR and Raman spectral landscapes show substantial additive genetic variation and are highly genetically correlated with the reference method. These findings lay down the foundation for rapid spectroscopic measurement of lipid content in salmonid breeding programmes.


Assuntos
Produtos Pesqueiros/normas , Lipídeos/análise , Característica Quantitativa Herdável , Salmo salar/genética , Análise Espectral Raman/métodos , Animais , Cruzamento/métodos , Cruzamento/normas , Metabolismo dos Lipídeos , Lipídeos/genética , Polimorfismo Genético , Padrões de Referência , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Espectroscopia de Luz Próxima ao Infravermelho/normas , Análise Espectral Raman/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...