Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ann Anat ; 227: 151424, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31610252

RESUMO

BACKGROUND: The physiological time axis of oocyte maturation comprises highly sensitive processes. A prolonged time span between ovulation and fertilization may impair oocyte developmental competence and subsequent embryo development, possibly due to epigenetic modifications. Since post-translational histone modifications can modify chromatin activity, and trimethylation of H3K9 (H3K9me3) has been shown to increase in the murine oocyte during maturation, here the effect of postovulatory oocyte aging on H3K9me3 was analyzed. METHODS: The competence of murine oocytes which were aged for 2, 4, 6 and 8 h in vitro after oocyte retrieval to develop to the two-cell and blastocyst stage was determined. Degree of H3K9me3 was analyzed in the postovulatory aged oocytes as well as in the resulting two-cell embryos after IVF. RESULTS: The current study shows that postovulatory aging of oocytes for up to eight hours after oocyte retrieval exhibited no effect on two-cell embryo and blastocyst rate; however, changes in H3K9me3 in the resulting two-cell embryos were observed. CONCLUSION: Prolonged postovulatory oocyte aging leads to epigenetic modifications of H3K9. Such modifications may affect the developmental capacity of embryos at post-implantation developmental stages.


Assuntos
Senescência Celular/fisiologia , Histonas/metabolismo , Oócitos/fisiologia , Animais , Blastocisto/fisiologia , Feminino , Fertilização in vitro , Imunofluorescência , Imuno-Histoquímica , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Ovulação/fisiologia , Processamento de Proteína Pós-Traducional
2.
PLoS One ; 9(10): e108907, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25271735

RESUMO

Maternal effect genes code for oocyte proteins that are important for early embryogenesis. Transcription in oocytes does not take place from the onset of meiotic progression until zygotic genome activation. During this period, protein levels are regulated posttranscriptionally, for example by poly(A) tail length. Posttranscriptional regulation may be impaired in preovulatory and postovulatory aged oocytes, caused by delayed ovulation or delayed fertilization, respectively, and may lead to developmental defects. We investigated transcript levels and poly(A) tail length of ten maternal effect genes in in vivo- and in vitro- (follicle culture) grown oocytes after pre- and postovulatory aging. Quantitative RT-PCR was performed using random hexamer-primed cDNA to determine total transcript levels and oligo(dT)16-primed cDNA to analyze poly(A) tail length. Transcript levels of in vivo preovulatory-aged oocytes remained stable except for decreases in Brg1 and Tet3. Most genes investigated showed a tendency towards increased poly(A) content. Polyadenylation of in vitro preovulatory-aged oocytes was also increased, along with transcript level declines of Trim28, Nlrp2, Nlrp14 and Zar1. In contrast to preovulatory aging, postovulatory aging of in vivo- and in vitro-grown oocytes led to a shortening of poly(A) tails. Postovulatory aging of in vivo-grown oocytes resulted in deadenylation of Nlrp5 after 12 h, and deadenylation of 4 further genes (Tet3, Trim28, Dnmt1, Oct4) after 24 h. Similarly, transcripts of in vitro-grown oocytes were deadenylated after 12 h of postovulatory aging (Tet3, Trim28, Zfp57, Dnmt1, Nlrp5, Zar1). This impact of aging on poly(A) tail length may affect the timed translation of maternal effect gene transcripts and thereby contribute to developmental defects.


Assuntos
Senescência Celular , Oócitos/citologia , Ovulação , Poli A/genética , RNA Mensageiro/genética , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA