Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 20(1): 908, 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31783727

RESUMO

BACKGROUND: In phylogenetically diverse organisms, the 5' ends of a subset of mRNAs are trans-spliced with a spliced leader (SL) RNA. The functions of SL trans-splicing, however, remain largely enigmatic. RESULTS: We quantified translation genome-wide in the marine chordate, Oikopleura dioica, under inhibition of mTOR, a central growth regulator. Translation of trans-spliced TOP mRNAs was suppressed, consistent with a role of the SL sequence in nutrient-dependent translational control of growth-related mRNAs. Under crowded, nutrient-limiting conditions, O. dioica continued to filter-feed, but arrested growth until favorable conditions returned. Upon release from unfavorable conditions, initial recovery was independent of nutrient-responsive, trans-spliced genes, suggesting animal density sensing as a first trigger for resumption of development. CONCLUSION: Our results are consistent with a proposed role of trans-splicing in the coordinated translational down-regulation of nutrient-responsive genes under growth-limiting conditions.


Assuntos
Regulação da Expressão Gênica , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Trans-Splicing , Transcrição Gênica , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Feminino , Mamíferos/genética , Motivos de Nucleotídeos , Oócitos/metabolismo , RNA Mensageiro/química , Serina-Treonina Quinases TOR/antagonistas & inibidores , Urocordados/genética
2.
BMC Genomics ; 19(1): 164, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29482522

RESUMO

BACKGROUND: Development is largely driven by transitions between transcriptional programs. The initiation of transcription at appropriate sites in the genome is a key component of this and yet few rules governing selection are known. Here, we used cap analysis of gene expression (CAGE) to generate bp-resolution maps of transcription start sites (TSSs) across the genome of Oikopleura dioica, a member of the closest living relatives to vertebrates. RESULTS: Our TSS maps revealed promoter features in common with vertebrates, as well as striking differences, and uncovered key roles for core promoter elements in the regulation of development. During spermatogenesis there is a genome-wide shift in mode of transcription initiation characterized by a novel core promoter element. This element was associated with > 70% of male-specific transcription, including the use of cryptic internal promoters within operons. In many cases this led to the exclusion of trans-splice sites, revealing a novel mechanism for regulating which mRNAs receive the spliced leader. Binding of the cell cycle regulator, E2F1, is enriched at the TSS of maternal genes in endocycling nurse nuclei. In addition, maternal promoters lack the TATA-like element found in zebrafish and have broad, rather than sharp, architectures with ordered nucleosomes. Promoters of ribosomal protein genes lack the highly conserved TCT initiator. We also report an association between DNA methylation on transcribed gene bodies and the TATA-box. CONCLUSIONS: Our results reveal that distinct functional promoter classes and overlapping promoter codes are present in protochordates like in vertebrates, but show extraordinary lineage-specific innovations. Furthermore, we uncover a genome-wide, developmental stage-specific shift in the mode of TSS selection. Our results provide a rich resource for the study of promoter structure and evolution in Metazoa.


Assuntos
Cordados/genética , Regulação da Expressão Gênica no Desenvolvimento , Sítio de Iniciação de Transcrição , Animais , Cordados/metabolismo , Metilação de DNA , Genoma , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Espermatogênese , TATA Box , Transcrição Gênica
3.
Artigo em Inglês | MEDLINE | ID: mdl-28115992

RESUMO

BACKGROUND: In multicellular organisms, epigenome dynamics are associated with transitions in the cell cycle, development, germline specification, gametogenesis and inheritance. Evolutionarily, regulatory space has increased in complex metazoans to accommodate these functions. In tunicates, the sister lineage to vertebrates, we examine epigenome adaptations to strong secondary genome compaction, sex chromosome evolution and cell cycle modes. RESULTS: Across the 70 MB Oikopleura dioica genome, we profiled 19 histone modifications, and RNA polymerase II, CTCF and p300 occupancies, to define chromatin states within two homogeneous tissues with distinct cell cycle modes: ovarian endocycling nurse nuclei and mitotically proliferating germ nuclei in testes. Nurse nuclei had active chromatin states similar to other metazoan epigenomes, with large domains of operon-associated transcription, a general lack of heterochromatin, and a possible role of Polycomb PRC2 in dosage compensation. Testis chromatin states reflected transcriptional activity linked to spermatogenesis and epigenetic marks that have been associated with establishment of transgenerational inheritance in other organisms. We also uncovered an unusual chromatin state specific to the Y-chromosome, which combined active and heterochromatic histone modifications on specific transposable elements classes, perhaps involved in regulating their activity. CONCLUSIONS: Compacted regulatory space in this tunicate genome is accompanied by reduced heterochromatin and chromatin state domain widths. Enhancers, promoters and protein-coding genes have conserved epigenomic features, with adaptations to the organization of a proportion of genes in operon units. We further identified features specific to sex chromosomes, cell cycle modes, germline identity and dosage compensation, and unusual combinations of histone PTMs with opposing consensus functions.


Assuntos
Cromatina/metabolismo , Genoma , Urocordados/genética , Animais , Cromatina/genética , Imunoprecipitação da Cromatina , Metilação de DNA , Elementos de DNA Transponíveis/genética , Feminino , Histonas/química , Histonas/genética , Histonas/metabolismo , Masculino , Ovário/metabolismo , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Testículo/metabolismo
4.
Worm ; 4(3): e1046030, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26430567

RESUMO

The trans-splicing of a spliced-leader RNA to a subset of mRNAs is a phenomenon that occurs in many species, including Caenorhabditis elegans, and yet the driving force for its evolution in disparate groups of animals remains unclear. Polycistronic mRNA resulting from the transcription of operons is resolved via trans-splicing, but operons comprise only a sub-set of trans-spliced genes. Using the marine chordate, Oikopleura dioica, we recently tested the hypothesis that metazoan operons accelerate recovery from growth arrest. We found no supporting evidence for this in O. dioica. Instead we found a striking relationship between trans-splicing and maternal mRNA in O. dioica, C. elegans and the ascidian, Ciona intestinalis. Furthermore, in O. dioica and C. elegans, we found evidence to suggest a role for mTOR signaling in the translational control of growth-related, trans-spliced maternal mRNAs. We propose that this may be a mechanism for adjusting egg number in response to nutrient levels in these species.

5.
Mol Biol Evol ; 32(3): 585-99, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25525214

RESUMO

Polycistronic mRNAs transcribed from operons are resolved via the trans-splicing of a spliced-leader (SL) RNA. Trans-splicing also occurs at monocistronic transcripts. The phlyogenetically sporadic appearance of trans-splicing and operons has made the driving force(s) for their evolution in metazoans unclear. Previous work has proposed that germline expression drives operon organization in Caenorhabditis elegans, and a recent hypothesis proposes that operons provide an evolutionary advantage via the conservation of transcriptional machinery during recovery from growth arrested states. Using a modified cap analysis of gene expression protocol we mapped sites of SL trans-splicing genome-wide in the marine chordate Oikopleura dioica. Tiled microarrays revealed the expression dynamics of trans-spliced genes across development and during recovery from growth arrest. Operons did not facilitate recovery from growth arrest in O. dioica. Instead, we found that trans-spliced transcripts were predominantly maternal. We then analyzed data from C. elegans and Ciona intestinalis and found that an enrichment of trans-splicing and operon gene expression in maternal mRNA is shared between all three species, suggesting that this may be a driving force for operon evolution in metazoans. Furthermore, we found that the majority of known terminal oligopyrimidine (TOP) mRNAs are trans-spliced in O. dioica and that the SL contains a TOP-like motif. This suggests that the SL in O. dioica confers nutrient-dependent translational control to trans-spliced mRNAs via the TOR-signaling pathway. We hypothesize that SL-trans-splicing provides an evolutionary advantage in species that depend on translational control for regulating early embryogenesis, growth and oocyte production in response to nutrient levels.


Assuntos
Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Óperon/genética , Trans-Splicing/genética , Animais , Caenorhabditis elegans/genética , Ciona intestinalis/genética , Feminino , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Urocordados/genética
6.
Nucleic Acids Res ; 41(Database issue): D845-53, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23185044

RESUMO

We report the development of OikoBase (http://oikoarrays.biology.uiowa.edu/Oiko/), a tiling array-based genome browser resource for Oikopleura dioica, a metazoan belonging to the urochordates, the closest extant group to vertebrates. OikoBase facilitates retrieval and mining of a variety of useful genomics information. First, it includes a genome browser which interrogates 1260 genomic sequence scaffolds and features gene, transcript and CDS annotation tracks. Second, we annotated gene models with gene ontology (GO) terms and InterPro domains which are directly accessible in the browser with links to their entries in the GO (http://www.geneontology.org/) and InterPro (http://www.ebi.ac.uk/interpro/) databases, and we provide transcript and peptide links for sequence downloads. Third, we introduce the transcriptomics of a comprehensive set of developmental stages of O. dioica at high resolution and provide downloadable gene expression data for all developmental stages. Fourth, we incorporate a BLAST tool to identify homologs of genes and proteins. Finally, we include a tutorial that describes how to use OikoBase as well as a link to detailed methods, explaining the data generation and analysis pipeline. OikoBase will provide a valuable resource for research in chordate development, genome evolution and plasticity and the molecular ecology of this important marine planktonic organism.


Assuntos
Bases de Dados Genéticas , Genômica , Transcriptoma , Urocordados/genética , Animais , Mineração de Dados , Perfilação da Expressão Gênica , Internet , Anotação de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Urocordados/embriologia , Urocordados/crescimento & desenvolvimento
7.
PLoS One ; 7(7): e40172, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22792236

RESUMO

Extracellular matrices regulate biological processes at the level of cells, tissues, and in some cases, entire multicellular organisms. The subphylum Urochordata exemplifies the latter case, where animals are partially or completely enclosed in "houses" or "tunics". Despite this common strategy, we show that the house proteome of the appendicularian, Oikopleura, has very little in common with the proteome of the sister class, ascidian, Ciona. Of 80 identified house proteins (oikosins), ∼half lack domain modules or similarity to known proteins, suggesting de novo appearance in appendicularians. Gene duplication has been important in generating almost 1/3 of the current oikosin complement, with serial duplications up to 8 paralogs in one family. Expression pattern analyses revealed that individual oikosins are produced from specific fields of cells within the secretory epithelium, but in some cases, migrate up to at least 20 cell diameters in extracellular space to combine in defined house structures. Interestingly, peroxidasin and secretory phospholipase A(2) domains, implicated in innate immune defence are secreted from the anlage associated with the food-concentrating filter, suggesting that this extra-organismal structure may play, in part, such a role in Oikopleura. We also show that sulfation of proteoglycans is required for the hydration and inflation of pre-house rudiments into functional houses. Though correct proportioning in the production of oikosins would seem important in repetitive assembly of the complex house structure, the genomic organization of oikosin loci appears incompatible with common enhancers or locus control regions exerting such a coordinate regulatory role. Thus, though all tunicates employ extracellular matrices based on a cellulose scaffold as a defining feature of the subphylum, they have evolved radically different protein compositions associated with this common underlying structural theme.


Assuntos
Matriz Extracelular/metabolismo , Proteoma/metabolismo , Urocordados/metabolismo , Animais , Epitélio/metabolismo , Feminino , Ordem dos Genes , Genoma , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Imunidade Inata/genética , Masculino , Filogenia , Transporte Proteico , Urocordados/genética , Urocordados/imunologia
8.
Science ; 330(6009): 1381-5, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-21097902

RESUMO

Genomes of animals as different as sponges and humans show conservation of global architecture. Here we show that multiple genomic features including transposon diversity, developmental gene repertoire, physical gene order, and intron-exon organization are shattered in the tunicate Oikopleura, belonging to the sister group of vertebrates and retaining chordate morphology. Ancestral architecture of animal genomes can be deeply modified and may therefore be largely nonadaptive. This rapidly evolving animal lineage thus offers unique perspectives on the level of genome plasticity. It also illuminates issues as fundamental as the mechanisms of intron gain.


Assuntos
Evolução Biológica , Genoma , Urocordados/genética , Animais , Elementos de DNA Transponíveis , DNA Intergênico , Éxons , Ordem dos Genes , Genes Duplicados , Genes Homeobox , Íntrons , Invertebrados/classificação , Invertebrados/genética , Dados de Sequência Molecular , Recombinação Genética , Spliceossomos/metabolismo , Sintenia , Urocordados/anatomia & histologia , Urocordados/classificação , Urocordados/imunologia , Vertebrados/classificação , Vertebrados/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...