Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
APL Photonics ; 8(2)2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38031595

RESUMO

Semiconductor-based laser particles (LPs) with exceptionally narrowband spectral emission have been used in biological systems for cell tagging purposes. Fabrication of these LPs typically requires highly specialized lithography and etching equipment, and is typically done in a cleanroom environment, hindering the broad adoption of this exciting new technology. Here, using only easily accessible laboratory equipment, we demonstrate a simple layer-by-layer fabrication strategy that overcomes this obstacle. We start from an indium phosphide (InP) substrate with multiple epitaxial indium gallium arsenide phosphide (InGaAsP) layers which are sequentially processed to yield LPs of various compositions and spectral properties. The LPs isolated from each layer are characterized, exhibiting excellent optical properties with lasing emission full width at half maximum as narrow as < 0.3 nm and typical thresholds of approximately 6 pJ upon excitation using a 3 ns pulse duration 1064 nm pump laser. The high quality of these particles renders them suitable for large-scale biological experiments including those requiring spectral multiplexing.

2.
ACS Nano ; 17(16): 16048-16055, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37523588

RESUMO

Nanolasers have great potential for both on-chip light sources and optical barcoding particles. We demonstrate ultrasmall InGaP and InGaAsP disk lasers with diameters down to 360 nm (198 nm in height) in the red spectral range. Optically pumped, room-temperature, single-mode lasing was achieved from both disk-on-pillar and isolated particles. When isolated disks were placed on gold, plasmon polariton lasing was obtained with Purcell-enhanced stimulated emission. UV lithography and plasma ashing enabled wafer-scale fabrication of nanodisks with an intended random size variation. Silica-coated nanodisk particles generated stable subnanometer spectra from within biological cells across an 80 nm bandwidth from 635 to 715 nm.

3.
Adv Photonics ; 5(5)2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38993283

RESUMO

Micro- and nano-disk lasers have emerged as promising optical sources and probes for on-chip and free-space applications. However, the randomness in disk diameter introduced by standard nanofabrication makes it challenging to obtain deterministic wavelengths. To address this, we developed a photoelectrochemical (PEC) etching-based technique that enables us to precisely tune the lasing wavelength with sub-nanometer accuracy. We examined the PEC mechanism and compound semiconductor etching rate in diluted sulfuric acid solution. Using this technique, we produced microlasers on a chip and isolated particles with distinct lasing wavelengths. Our results demonstrate that this scalable technique can be used to produce groups of lasers with precise emission wavelengths for various nanophotonic and biomedical applications.

4.
Lab Chip ; 22(12): 2343-2351, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35621381

RESUMO

Laser particles providing bright, spectrally narrowband emission renders them suitable for use as cellular barcodes. Here, we demonstrate a microfluidic platform integrated with a high-speed spectrometer, capable of reading the emission from laser particles in fluidic channels and routing cells based on their optical barcodes. The sub-nanometer spectral emission of each laser particle enables us to distinguish individual cells labeled with hundreds of different laser colors in the near infrared. Furthermore, cells tagged with laser particles are sorted based on their spectral barcodes at a kilohertz rate by using a real-time field programmable gate array and 2-way electric field switch. We demonstrate several different flavors of sorting, including isolation of barcoded cells, and cells tagged with a specific laser color. We term this novel sorting technique laser particle activated cell sorting (LACS). This flow reading and sorting technology adds to the arsenal of single-cell analysis tools using laser particles.


Assuntos
Lasers , Microfluídica , Separação Celular/métodos , Luz , Análise de Célula Única
5.
Opt Express ; 29(23): 38109-38118, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808870

RESUMO

Micron-scale barcode particles enable labelling of small objects. Here, we demonstrate high-throughput barcode fabrication inside a microfluidic chip that can embed multiple, dye-doped high quality-factor whispering gallery mode cavities inside aqueous droplets at kilohertz rates. These droplets are then cured to form polyacrylamide hydrogel beads as small as 30 µm in diameter. Optical resonance spectra of the embedded cavities provide the hydrogels with unique barcodes with their diversity combinatorically scaled with the number of embedded cavities. Using 3 cavities per hydrogel, we obtain approximately one million uniquely identifiable, optically readable barcode microparticles.

7.
Light Sci Appl ; 10(1): 23, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33495436

RESUMO

The ability to track individual cells in space over time is crucial to analyzing heterogeneous cell populations. Recently, microlaser particles have emerged as unique optical probes for massively multiplexed single-cell tagging. However, the microlaser far-field emission is inherently direction-dependent, which causes strong intensity fluctuations when the orientation of the particle varies randomly inside cells. Here, we demonstrate a general solution based on the incorporation of nanoscale light scatterers into microlasers. Two schemes are developed by introducing either boundary defects or a scattering layer into microdisk lasers. The resulting laser output is omnidirectional, with the minimum-to-maximum ratio of the angle-dependent intensity improving from 0.007 (-24 dB) to > 0.23 (-6 dB). After transfer into live cells in vitro, the omnidirectional laser particles within moving cells could be tracked continuously with high signal-to-noise ratios for 2 h, while conventional microlasers exhibited frequent signal loss causing tracking failure.

8.
Adv Funct Mater ; 31(48)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35418816

RESUMO

Fluorescent microbeads are widely used for applications in life sciences and medical diagnosis. The spectral contrast and sharpness of photoluminescence are critical in the utilities of microbeads for imaging and multiplexing. Here, we demonstrate microbeads capable of generating single-peak laser emission with a sub-nanometer linewidth. The microbeads are made of quantum dots that are tightly packed and crosslinked via ligand exchange for high optical gain and refractive index as well as material stability. Bright single-mode lasing with no photobleaching is achieved with particle diameters as small as 1.5 µm in the air. Sub-nm lasing emission is maintained even inside high-index surroundings, such as organic solvents and biological tissues. Feasibility of intracellular tagging and multi-color imaging in vivo is demonstrated.

9.
Light Sci Appl ; 8: 74, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31645920

RESUMO

Biomolecular analysis at the single-cell level is increasingly important in the study of cellular heterogeneity and its consequences, particularly in organismic development and complex diseases such as cancer. Single-cell molecular analyses have led to the identification of new cell types1 and the discovery of novel targets for diagnosis and therapy2. While these analyses are performed predominantly on dissociated single cells, emerging techniques seek understanding of cellular state, cellular function and cell-cell interactions within the native tissue environment by combining optical microscopy and single-cell molecular analyses. These techniques include in situ multiplexed imaging of fluorescently labeled proteins and nucleotides, as well as low-throughput ex vivo methods in which specific cells are isolated for downstream molecular analyses. However, these methods are limited in either the number and type of molecular species they can identify or the number of cells that can be analyzed. High-throughput methods are needed for comprehensive profiling of many cells (>1000) to detect rare cell types, discriminate relevant biomarkers from intrinsic population noise, and reduce the time and cost of measurement. Many established, high-throughput single-cell analyses are not directly applicable because they require tissue dissociation, leading to a loss of spatial information3. No current methods exist that can seamlessly connect spatial mapping to single-cell techniques. In this Perspective, we review current methods for spatially resolved single-cell analysis and discuss the prospect of novel multiplexed imaging probes, called laser particles, which allow individual cells to be tagged in tissue and analyzed subsequently using high-throughput, comprehensive single-cell techniques.

10.
Nat Photonics ; 13(10): 720-727, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32231707

RESUMO

Large-scale single-cell analyses have become increasingly important given the role of cellular heterogeneity in complex biological systems. However, no current techniques enable optical imaging of uniquely-tagged individual cells. Fluorescence-based approaches can only distinguish a small number of distinct cells or cell groups at a time because of spectral crosstalk between conventional fluorophores. Here we investigate large-scale cell tracking using intracellular laser particles as imaging probes that emit coherent laser light with a characteristic wavelength. Made of silica-coated semiconductor microcavities, these laser particles have single-mode emission over a broad range from 1170 to 1580 nm with sub-nm linewidths, enabling massive spectral multiplexing. We explore the stability and biocompatibility of these probes in vitro and their utility for wavelength-multiplexed cell tagging and imaging. We demonstrate real-time tracking of thousands of individual cells in a 3D tumour model over several days showing different behavioural phenotypes.

11.
Phys Rev Lett ; 113(2): 020601, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25062157

RESUMO

We demonstrate the possibility to systematically steer the most probable escape paths (MPEPs) by adjusting relative noise intensities in dynamical systems that exhibit noise-induced escape from a metastable point via a saddle point. With the use of a geometric minimum action approach, an asymptotic theory is developed that is broadly applicable to fast-slow systems and shows the important role played by the nullcline associated with the fast variable in locating the MPEPs. A two-dimensional quadratic system is presented which permits analytical determination of both the MPEPs and associated action values. Analytical predictions agree with computed MPEPs, and both are numerically confirmed by constructing prehistory distributions directly from the underlying stochastic differential equation.


Assuntos
Modelos Teóricos , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...