Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Med Genet A ; 191(5): 1418-1424, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36794641

RESUMO

CHD7 disorder is a multiple congenital anomaly syndrome with a highly variable phenotypic spectrum, and includes CHARGE syndrome. Internal and external genital phenotypes frequently seen in CHD7 disorder include cryptorchidism and micropenis in males, and vaginal hypoplasia in females, both thought to be secondary to hypogonadotropic hypogonadism. Here, we report 14 deeply phenotyped individuals with known CHD7 variants (9 pathogenic/likely pathogenic and 5 VOUS) and a range of reproductive and endocrine phenotypes. Reproductive organ anomalies were observed in 8 of 14 individuals and were more commonly noted in males (7/7), most of whom presented with micropenis and/or cryptorchidism. Kallmann syndrome was commonly observed among adolescents and adults with CHD7 variants. Remarkably, one 46,XY individual presented with ambiguous genitalia, cryptorchidism with Müllerian structures including uterus, vagina and fallopian tubes, and one 46,XX female patient presented with absent vagina, uterus and ovaries. These cases expand the genital and reproductive phenotype of CHD7 disorder to include two individuals with genital/gonadal atypia (ambiguous genitalia), and one with Müllerian aplasia.


Assuntos
Síndrome CHARGE , Criptorquidismo , Transtornos do Desenvolvimento Sexual , Humanos , Masculino , Feminino , Fenótipo , Síndrome CHARGE/genética , Transtornos do Desenvolvimento Sexual/genética , Genitália , DNA Helicases/genética , Proteínas de Ligação a DNA/genética
2.
Adv Pediatr ; 69(1): 203-217, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35985710

RESUMO

Growth hormone (GH) is an injectable medication originally used to replace the deficiency of the hormone, but has expanded to treating conditions that may reduce growth and adult height even when the body maintains endogenous GH production. In the United States, there are 8 Food and Drug Administration (FDA)-approved indications for pediatric GH therapy: GH deficiency, Prader-Willi Syndrome, small for gestational age (SGA) without catch-up growth, idiopathic short stature, Turner syndrome, SHOX gene haploinsufficiency, Noonan Syndrome, and chronic renal insufficiency. We characterize the growth patterns and effects of GH treatment in each of these indications. We also review patterns of growth that warrant referral to a pediatric endocrinologist, as well as safety updates. This review is intended to guide practitioners on the initial evaluation and management of patients with short stature, and the indications for GH therapy.


Assuntos
Nanismo , Hormônio do Crescimento Humano , Síndrome de Prader-Willi , Síndrome de Turner , Adulto , Criança , Nanismo/tratamento farmacológico , Transtornos do Crescimento/diagnóstico , Transtornos do Crescimento/tratamento farmacológico , Hormônio do Crescimento/uso terapêutico , Hormônio do Crescimento Humano/uso terapêutico , Humanos , Síndrome de Prader-Willi/diagnóstico , Síndrome de Prader-Willi/tratamento farmacológico , Síndrome de Turner/induzido quimicamente , Síndrome de Turner/diagnóstico , Síndrome de Turner/tratamento farmacológico , Estados Unidos
3.
Front Endocrinol (Lausanne) ; 13: 863184, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399928

RESUMO

Incretin hormones play an important role in the regulation of glucose homeostasis through their actions on the beta cells and other tissues. Glucagon-like peptide-1 (GLP-1) and glucose dependent insulinotropic polypeptide (GIP) are the two main incretins and are secreted by enteroendocrine L- and K-cells, respectively. New evidence suggests that incretin hormones, particularly GLP-1, play a role in the pathophysiology of hyperinsulinemic hypoglycemia. In individuals with acquired hyperinsulinemic hypoglycemia after gastrointestinal surgery, including Nissen fundoplication and gastric bypass surgery, the incretin response to a meal is markedly increased and antagonism of the GLP-1 receptor prevents the hyperinsulinemic response. In individuals with congenital hyperinsulinism due to inactivating mutations in the genes encoding the beta cell KATP channels, the GLP-1 receptor antagonist, exendin-(9-39), increases fasting plasma glucose and prevents protein-induced hypoglycemia. Studies in human and mouse islets lacking functional KATP channels have demonstrated that the effect on plasma glucose is at least in part mediated by inhibition of insulin secretion resulting from lower cytoplasmic cAMP levels. The understanding of the role of incretin hormones in the pathophysiology of hyperinsulinemic hypoglycemia is important for the exploration of the GLP-1 receptor as a therapeutic target for these conditions. In this article, we will review incretin physiology and evidence supporting a role of the incretin hormones in the pathophysiology of hyperinsulinemic hypoglycemia, as well as results from proof-of concept studies exploring a therapeutic approach targeting the GLP-1 receptor to treat hyperinsulinemic hypoglycemia.


Assuntos
Hiperinsulinismo Congênito , Peptídeo 1 Semelhante ao Glucagon , Trifosfato de Adenosina , Glicemia , Hiperinsulinismo Congênito/genética , Polipeptídeo Inibidor Gástrico , Receptor do Peptídeo Semelhante ao Glucagon 1 , Incretinas
4.
PLoS One ; 14(2): e0211797, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30753231

RESUMO

We are describing and figuring for the first time skulls of Schansitherium tafeli, which are abundant in the Gansu area of China from the Late Miocene. They were animals about the size of Samotherium with shorter necks that had two pairs of ossicones that merge at the base, which is unlike Samotherium. The anterior ossicones consist of anterior lineations, which may represent growth lines. They were likely mixed feeders similar to Samotherium. Schansitherium is tentatively placed in a very close position to Samotherium. Samotherium and Schansitherium represent a pair of morphologically very similar species that likely coexisted similarly to pairs of modern species, where the main difference is in the ossicones. Pairs of ruminants in Africa, for example, exist today that differ mostly in their horn shape but otherwise are similar in size, shape, and diet. The absence of Schansitherium from Europe is interesting, however, as Samotherium is found in both locations. While is it challenging to interpret neck length and ossicone shape in terms of function in combat, we offer our hypothesis as to how the two species differed in their fighting techniques.


Assuntos
Evolução Biológica , Fósseis/anatomia & histologia , Girafas , Filogenia , Animais , China , Girafas/anatomia & histologia , Girafas/classificação , Girafas/fisiologia
5.
R Soc Open Sci ; 5(1): 171782, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29410871

RESUMO

We revisit digit reduction in the horse and propose that all five digits are partially present in the modern adult forelimb. Osteological descriptions of selected tetradactyl, tridactyl and monodactyl equids demonstrate the evolution of the forelimb. Histological, osteological and palaeontological evidence suggest that the Equus distal forelimb is more complex than traditionally conceived. The current understanding is that the horse distal forelimb consists of one complete digit (III) and two reduced splint metacarpals (II and IV). Metacarpals II and IV each exhibit a ventral ridge, which we suggest represents the undifferentiated digits I and V. These ridges are present in the tridactyl Mesohippus, but are absent in the tetradactyl Hyracotherium. The carpal articulations of the five metacarpals match those of pentadactyl taxa. Distally, the frog, a V-shaped structure on the ventral hoof represents digits II and IV, and the wings and hoof cartilages of the distal phalanx are digits I and V. We relate this revised interpretation of the Equus forelimb to Laetoli footprints, and suggest the Hipparion side impressions are created from the hooves of I and V, rather than from II and IV. We show shades of pentadactyly within the Equus manus.

6.
PLoS One ; 12(9): e0185139, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28926638

RESUMO

The oldest Giraffa material presently known consists of dental specimens. The oldest post-cranial Giraffa material belongs to the Plio-Pleistocene taxon Giraffa sivalensis, where the holotype is a third cervical vertebra. We describe three non-dental specimens from the Early Late Miocene of the Potwar Plateau, including an 8.1 million year old ossicone, 9.4 million year old astragalus, and 8.9 million year old metatarsal and refer them to Giraffa. The described ossicone exhibits remarkable similarities with the ossicones of a juvenile modern giraffe, including the distribution of secondary bone growth, posterior curvature, and concave pitted undersurface where the ossicone would attach to the skull. The astragalus has a notably flat grove of the trochlea, medial twisting between the trochlea and the head, and a square-shaped sustentacular facet, all of which characterize the astragalus of Giraffa camelopardalis. The newly described astragalus is narrow and rectangular, unlike the boxy shaped bone of the modern giraffe. The metatarsal is large in size and has a shallow central trough created by thin medial and lateral ridges, a feature unique to Giraffa and Sivatherium. Our described material introduce the earliest non-dental material of Giraffa, a genus whose extinct representation is otherwise dominated by teeth, and demonstrate that the genus has been morphologically consistent over 9 million years.


Assuntos
Girafas/anatomia & histologia , Animais , Evolução Biológica , Fósseis/história , História Antiga , Masculino , Crânio/anatomia & histologia , Tálus/anatomia & histologia
7.
PLoS One ; 11(3): e0151310, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27028515

RESUMO

The artiodactyl astragalus has been modified to exhibit two trochleae, creating a double pullied structure allowing for significant dorso-plantar motion, and limited mediolateral motion. The astragalus structure is partly influenced by environmental substrates, and correspondingly, morphometric studies can yield paleohabitat information. The present study establishes terminology and describes detailed morphological features on giraffid astragali. Each giraffid astragalus exhibits a unique combination of anatomical characteristics. The giraffid astragalar morphologies reinforce previously established phylogenetic relationships. We find that the enlargement of the navicular head is a feature shared by all giraffids, and that the primitive giraffids possess exceptionally tall astragalar heads in relation to the total astragalar height. The sivatheres and the okapi share a reduced notch on the lateral edge of the astragalus. We find that Samotherium is more primitive in astragalar morphologies than Palaeotragus, which is reinforced by tooth characteristics and ossicone position. Diagnostic anatomical characters on the astragalus allow for giraffid species identifications and a better understanding of Giraffidae.


Assuntos
Evolução Biológica , Girafas/anatomia & histologia , Girafas/classificação , Tálus/anatomia & histologia , Animais , Girafas/fisiologia
8.
R Soc Open Sci ; 2(11): 150521, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26716010

RESUMO

Giraffidae are represented by many extinct species. The only two extant taxa possess diametrically contrasting cervical morphology, as the okapi is short-necked and the giraffe is exceptionally long-necked. Samotherium major, known from the Late Miocene of Samos in Greece and other Eurasian localities, is a key extinct giraffid; it possesses cervical vertebrae that are intermediate in the evolutionary elongation of the neck. We describe detailed anatomical features of the cervicals of S. major, and compare these characteristics with the vertebrae of the two extant giraffid taxa. Based on qualitative morphological characters and a quantitative analysis of cervical dimensions, we find that the S. major neck is intermediate between that of the okapi and the giraffe. Specifically, the more cranial (C2-C3) vertebrae of S. major represent a mosaic of features shared either with the giraffe or with the okapi. The more caudal (C5-C7) S. major vertebrae, however, appear transitional between the two extant taxa, and hence are more unique. Notably, the C6 of S. major exhibits a partially excavated ventral lamina that is strong cranially but completely absent on the caudal half of the ventral vertebral body, features between those seen in the giraffe and the okapi. Comprehensive anatomical descriptions and measurements of the almost-complete cervical column reveal that S. major is a truly intermediate-necked giraffid. Reconstructions of the neck display our findings.

9.
R Soc Open Sci ; 2(10): 150393, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26587249

RESUMO

Several evolutionary theories have been proposed to explain the adaptation of the long giraffe neck; however, few studies examine the fossil cervical vertebrae. We incorporate extinct giraffids, and the okapi and giraffe cervical vertebral specimens in a comprehensive analysis of the anatomy and elongation of the neck. We establish and evaluate 20 character states that relate to general, cranial and caudal vertebral lengthening, and calculate a length-to-width ratio to measure the relative slenderness of the vertebrae. Our sample includes cervical vertebrae (n=71) of 11 taxa representing all seven subfamilies. We also perform a computational comparison of the C3 of Samotherium and Giraffa camelopardalis, which demonstrates that cervical elongation occurs disproportionately along the cranial-caudal vertebral axis. Using the morphological characters and calculated ratios, we propose stages in cervical lengthening, which are supported by the mathematical transformations using fossil and extant specimens. We find that cervical elongation is anisometric and unexpectedly precedes Giraffidae. Within the family, cranial vertebral elongation is the first lengthening stage observed followed by caudal vertebral elongation, which accounts for the extremely long neck of the giraffe.

10.
PLoS One ; 10(8): e0136552, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26302156

RESUMO

Giraffidae is the only family of ruminants that is represented by two extant species; Okapia johnstoni and Giraffa camelopardalis. Of these taxa, O. johnstoni represents a typical short-necked ungulate, and G. camelopardalis exemplifies the most extreme cervical elongation seen in any ruminant. We utilize these two species to provide a comprehensive anatomic description of the cervical vertebrae. In addition, we compare the serial morphologic characteristics of the okapi and giraffe cervical vertebrae, and report on several osteologic differences seen between the two taxa. The giraffe neck appears to exhibit homogenization of C3-C7; the position of the dorsal tubercle, thickness of the cranial articular process, shape of the ventral vertebral body, and orientation of the ventral tubercle are constant throughout these vertebrae, whereas these features are serially variable in the okapi. We also report on several specializations of the giraffe C7, which we believe relates to an atypical cervico-thoracic junction, corresponding to the substantial neck lengthening. The morphologic differences exhibited between the okapi and giraffe cervical vertebrae have implications on the function of the necks relating to both fighting and feeding.


Assuntos
Vértebras Cervicais/anatomia & histologia , Girafas/anatomia & histologia , Animais , Pescoço/anatomia & histologia , Osteologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...