Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Chem Phys ; 130(8): 081103, 2009 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-19256588

RESUMO

We report the observation of quantized translational and rotational motion of molecular hydrogen inside the cages of C(60). Narrow infrared absorption lines at the temperature of 6 K correspond to vibrational excitations in combination with translational and rotational excitations and show well-resolved splittings due to the coupling between translational and rotational modes of the endohedral H(2) molecule. A theoretical model shows that H(2) inside C(60) is a three-dimensional quantum rotor moving in a nearly spherical potential. The theory provides both the frequencies and the intensities of the observed infrared transitions. Good agreement with the experimental results is obtained by fitting a small number of empirical parameters to describe the confining potential, as well as the relative concentration of ortho- and para-H(2).

3.
Phys Rev Lett ; 102(1): 013001, 2009 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-19257185

RESUMO

We report an inelastic neutron scattering investigation of the quantum dynamics of hydrogen molecules trapped inside anisotropic fullerene cages. Transitions among the manifold of quantized rotational and translational states are directly observed. The spectra recorded as a function of energy and momentum transfer are interpreted in terms of the rotational potential and the cage dimensions. The thermodynamics of orthohydrogen and parahydrogen are investigated through temperature dependence measurements.

4.
J Chem Phys ; 128(14): 144512, 2008 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-18412464

RESUMO

The low-temperature structure and dynamics of guest molecules of p-xylene incorporated in the isopropyl-calix[4] arene(2:1) p-xylene complex have been investigated by solid state nuclear magnetic resonance (NMR). Using one-dimensional 1H-decoupled 13C cross-polarization magic-angle-spinning (MAS) NMR and two-dimensional 1H-13C correlation spectroscopy, a full assignment of the 13C and 1H chemical shifts has been made. Using 1H NMR relaxometry, the effects of thermal history on the structure of the system have been investigated. Rapidly cooled samples have 1H spin-lattice relaxation times T1, which at low temperature (T<60 K) are typically two orders of magnitude faster than those observed in annealed samples which have been cooled slowly over many hours. In both forms, the low-temperature relaxation is driven by the dynamics of the weakly hindered methyl rotors of the p-xylene guest. The substantial difference in T1 is attributed in the rapidly cooled sample to disorder in the structure of the complex leading to a wide distribution of correlation times and methyl barrier heights. A comparison of the linewidths and splittings in the high resolution 13C MAS spectra of the two forms provides structural insight into the nature of the disorder. Using 1H field-cycling NMR relaxometry, the methyl dynamics of the p-xylene guest in the annealed sample have been fully characterized. The B-field dependence of the 1H T1 maps out the spectral density from which the correlation times are directly measured. The methyl barrier heights are determined from an analysis of the temperature dependence.

5.
Phys Chem Chem Phys ; 9(35): 4879-94, 2007 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-17912417

RESUMO

We present an overview of solid-state NMR studies of endohedral H(2)-fullerene complexes, including (1)H and (13)C NMR spectra, (1)H and (13)C spin relaxation studies, and the results of (1)H dipole-dipole recoupling experiments. The available data involves three different endohedral H(2)-fullerene complexes, studied over a wide range of temperatures and applied magnetic fields. The symmetry of the cage influences strongly the motionally-averaged nuclear spin interactions of the endohedral H(2) species, as well as its spin relaxation behaviour. In addition, the non-bonding interactions between fullerene cages are influenced by the presence of endohedral hydrogen molecules. The review also presents several pieces of experimental data which are not yet understood, one example being the structured (1)H NMR lineshapes of endohedral H(2) molecules trapped in highly symmetric cages at cryogenic temperatures. This review demonstrates the richness of NMR phenomena displayed by H(2)-fullerene complexes, especially in the cryogenic regime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...