Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 70(2): 787-93, 1996 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-8551616

RESUMO

Herpes simplex virus (HSV) encodes its own ribonucleotide reductase (RR), which provides the high levels of deoxynucleoside triphosphates required for viral DNA replication in infected cells. HSV RR is composed of two distinct subunits, R1 and R2, whose association is required for enzymatic activity. Peptidomimetic inhibitors that mimic the C-terminal amino acids of R2 inhibit HSV RR by preventing the association of R1 and R2. These compounds are candidate antiviral therapeutic agents. Here we describe the in vitro selection of HSV type 1 KOS variants with three- to ninefold-decreased sensitivity to the RR inhibitor BILD 733. The resistant isolates have growth properties in vitro similar to those of wild-type KOS but are more sensitive to acyclovir, possibly as a consequence of functional impairment of their RRs. A single amino acid substitution in R1 (Ala-1091 to Ser) was associated with threefold resistance to BILD 733, whereas an additional substitution (Pro-1090 to Leu) was required for higher levels of resistance. These mutations were reintroduced into HSV type 1 KOS and shown to be sufficient to confer the resistance phenotype. Studies in vitro with RRs isolated from cells infected with these mutant viruses demonstrated that these RRs bind BILD 733 more weakly than the wild-type enzyme and are also functionally impaired, exhibiting an elevated dissociation constant (Kd) for R1-R2 subunit association and/or reduced activity (kcat). This work provides evidence that the C-terminal end of HSV R1 (residues 1090 and 1091) is involved in R2 binding interactions and demonstrates that resistance to subunit association inhibitors may be associated with compromised activity of the target enzyme.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Oligopeptídeos/farmacologia , Ribonucleotídeo Redutases/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Chlorocebus aethiops , DNA Viral , Resistência Microbiana a Medicamentos , Marcadores Genéticos , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/crescimento & desenvolvimento , Herpesvirus Humano 1/isolamento & purificação , Humanos , Dados de Sequência Molecular , Mutação , Fenótipo , Ribonucleotídeo Redutases/metabolismo , Células Vero
2.
Biochem Cell Biol ; 69(1): 79-83, 1991 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-2043345

RESUMO

Previous studies have shown that herpes virus ribonucleotide reductase can be inhibited by a synthetic nonapeptide whose sequence is identical to the C-terminal of the small subunit of the enzyme. This peptide is able to interfere with normal subunit association that takes place through the C-terminal of the small subunit. In this report, we illustrate that inhibition of ribonucleotide reductases by peptides corresponding to the C-terminal of subunit R2 is also observed for the enzyme isolated from Escherichia coli, hamster, and human cells. The nonapeptide corresponding to the bacterial C-terminal sequence was found to inhibit E. coli enzyme with an IC50 of 400 microM, while this peptide had no effect on mammalian ribonucleotide reductase. A corresponding synthetic peptide derived from the C-terminal of the small subunit of the human enzyme inhibited both human and hamster ribonucleotide reductases with IC50 values of 160 and 120 microM, respectively. However, this peptide had no inhibitory activity against the bacterial enzyme. Equivalent peptides derived from herpes virus ribonucleotide reductase had no effect on either the bacterial or mammalian enzymes. Thus, subunit association at the C-terminal of the small subunit appears to be a common feature of ribonucleotide reductases. In addition, the inhibitory phenomenon observed with peptides corresponding to the C-terminal appears not only to be universal, but also specific to the primary sequence of the enzyme.


Assuntos
Fragmentos de Peptídeos/farmacologia , Ribonucleotídeo Redutases/antagonistas & inibidores , Acetilação , Sequência de Aminoácidos , Animais , Bacitracina/farmacologia , Cromatografia Líquida de Alta Pressão , Cricetinae , Escherichia coli/enzimologia , Herpesviridae/enzimologia , Humanos , Dados de Sequência Molecular , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...