Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
RSC Adv ; 12(31): 20156-20173, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35919614

RESUMO

A new approach has been developed for environmentally friendly C-C cross-coupling reactions using bi-functional Pd(ii)-salen complex-embedded cellulose filter paper (FP@Si-PdII-Salen-[IM]OH). A Pd(ii)-salen complex bearing imidazolium [OH]-moieties was covalently embedded into a plain filter paper, then used as an efficient portable catalyst for the Heck, Suzuki, and Sonogashira cross-coupling reactions under environmentally friendly conditions via the filtration method. The catalytic filter paper properties were studied by EDX, XPS, TGA, ATR, XRD, and FESEM analyses. The reactions were catalyzed during reactants' filtration over the catalytic filter paper. The modified filter paper was set up over a funnel and the reactants were passed through the catalytic filter paper several times. The effect of reaction parameters including loading of Pd(ii)-salen complex, temperature, solvent, and contact time were carefully studied and also the optimal model of conditions was presented by the design expert software. High to excellent yields were obtained for all C-C coupling types with 5 to 8 filtration times. Under optimal conditions, all coupling reactions showed high selectivity and efficiency. Another advantage of the modified filter paper was its stability and reusability for several times with preservation of catalytic activity and swellability.

3.
Cell Commun Signal ; 20(1): 79, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35655192

RESUMO

Coronavirus disease (COVID-19) is a viral infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The infection was reported in Wuhan, China, in late December 2019 and has become a major global concern due to severe respiratory infections and high transmission rates. Evidence suggests that the strong interaction between SARS-CoV-2 and patients' immune systems leads to various clinical symptoms of COVID-19. Although the adaptive immune responses are essential for eliminating SARS-CoV-2, the innate immune system may, in some cases, cause the infection to progress. The cytotoxic CD8+ T cells in adaptive immune responses demonstrated functional exhaustion through upregulation of exhaustion markers. In this regard, humoral immune responses play an essential role in combat SARS-CoV-2 because SARS-CoV-2 restricts antigen presentation through downregulation of MHC class I and II molecules that lead to the inhibition of T cell-mediated immune response responses. This review summarizes the exact pathogenesis of SARS-CoV-2 and the alteration of the immune response during SARS-CoV-2 infection. In addition, we've explained the exhaustion of the immune system during SARS-CoV-2 and the potential immunomodulation approach to overcome this phenomenon. Video Abstract.


Assuntos
COVID-19 , Imunidade Inata , Linfócitos T CD8-Positivos , China , Humanos , SARS-CoV-2
4.
Genes Dis ; 9(4): 849-867, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35685482

RESUMO

Blood disorders include a wide spectrum of blood-associated malignancies resulting from inherited or acquired defects. The ineffectiveness of existing therapies against blood disorders arises from different reasons, one of which is drug resistance, so different types of leukemia may show different responses to treatment. Leukemia occurs for a variety of genetic and acquired reasons, leading to uncontrolled proliferation in one or more cell lines. Regarding the genetic defects, oncogene signal transducer and activator of transcription (STAT) family transcription factor, especially STAT3, play an essential role in hematological disorders onset and progress upon mutations, dysfunction, or hyperactivity. Besides, microRNAs, as biological molecules, has been shown to play a dual role in either tumorigenesis and tumor suppression in various cancers. Besides, a strong association between STAT3 and miRNA has been reported. For example, miRNAs can regulate STAT3 via targeting its upstream mediators such as IL6, IL9, and JAKs or directly binding to the STAT3 gene. On the other hand, STAT3 can regulate miRNAs. In this review study, we aimed to determine the role of either microRNAs and STAT3 along with their effect on one another's activity and function in hematological malignancies.

5.
Int Immunopharmacol ; 89(Pt B): 107088, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33129099

RESUMO

BACKGROUND: As an ongoing worldwide health issue, Coronavirus disease 2019 (COVID-19) has been causing serious complications, including pneumonia, acute respiratory distress syndrome (ARDS), and multi-organ failure. However, there is no decisive treatment approach available for this disorder, which is primarily attributed to the large amount of inflammatory cytokine production. We aimed to identify the effects of Nano-curcumin on the modulation of inflammatory cytokines in COVID-19 patients. METHOD: Forty COVID-19 patients and 40 healthy controls were recruited and evaluated for inflammatory cytokine expression and secretion. Subsequently, COVID-19 patients were divided into two groups: 20 patients receiving Nano-curcumin and 20 patients as the placebo group. The mRNA expression and cytokine secretion levels of IL-1ß, IL-6, TNF-α and IL-18 were assessed by Real-time PCR and ELISA, respectively. RESULT: Our primary results indicated that the mRNA expression and cytokine secretion of IL-1ß, IL-6, TNF-α, and IL-18 were increased significantly in COVID-19 patients compared with healthy control group. After treatment with Nano-curcumin, a significant decrease in IL-6 expression and secretion in serum and in supernatant (P = 0.0003, 0.0038, and 0.0001, respectively) and IL-1ß gene expression and secretion level in serum and supernatant (P = 0.0017, 0.0082, and 0.0041, respectively) was observed. However, IL-18 mRNA expression and TNF-α concentration were not influenced by Nano-curcumin. CONCLUSION: Nano-curcumin, as an anti-inflammatory herbal based agent, may be able to modulate the increased rate of inflammatory cytokines especially IL-1ß and IL-6 mRNA expression and cytokine secretion in COVID-19 patients, which may cause an improvement in clinical manifestation and overall recovery.


Assuntos
Tratamento Farmacológico da COVID-19 , Curcumina/uso terapêutico , Citocinas/sangue , SARS-CoV-2 , Adulto , Idoso , COVID-19/complicações , COVID-19/imunologia , COVID-19/mortalidade , Citocinas/genética , Método Duplo-Cego , Feminino , Humanos , Masculino , Micelas , Pessoa de Meia-Idade , Nanotecnologia , RNA Mensageiro/análise , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...