Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(48): eadj4897, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38019904

RESUMO

Animals use past experience to guide future choices. The integration of experiences typically follows a hyperbolic, rather than exponential, decay pattern with a heavy tail for distant history. Hyperbolic integration affords sensitivity to both recent environmental dynamics and long-term trends. However, it is unknown how the brain implements hyperbolic integration. We found that mouse behavior in a foraging task showed hyperbolic decay of past experience, but the activity of cortical neurons showed exponential decay. We resolved this apparent mismatch by observing that cortical neurons encode history information with heterogeneous exponential time constants that vary across neurons. A model combining these diverse timescales recreated the heavy-tailed, hyperbolic history integration observed in behavior. In particular, the time constants of retrosplenial cortex (RSC) neurons best matched the behavior, and optogenetic inactivation of RSC uniquely reduced behavioral history dependence. These results indicate that behavior-relevant history information is maintained across multiple timescales in parallel and that RSC is a critical reservoir of information guiding decision-making.


Assuntos
Encéfalo , Giro do Cíngulo , Camundongos , Animais , Giro do Cíngulo/fisiologia , Córtex Cerebral/fisiologia
2.
Cell ; 177(7): 1858-1872.e15, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31080067

RESUMO

Decision making is often driven by the subjective value of available options, a value which is formed through experience. To support this fundamental behavior, the brain must encode and maintain the subjective value. To investigate the area specificity and plasticity of value coding, we trained mice in a value-based decision task and imaged neural activity in 6 cortical areas with cellular resolution. History- and value-related signals were widespread across areas, but their strength and temporal patterns differed. In expert mice, the retrosplenial cortex (RSC) uniquely encoded history- and value-related signals with persistent population activity patterns across trials. This unique encoding of RSC emerged during task learning with a strong increase in more distant history signals. Acute inactivation of RSC selectively impaired the reward-history-based behavioral strategy. Our results indicate that RSC flexibly changes its history coding and persistently encodes value-related signals to support adaptive behaviors.


Assuntos
Comportamento Animal/fisiologia , Tomada de Decisões/fisiologia , Giro do Cíngulo/fisiologia , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais , Camundongos , Camundongos Transgênicos
3.
PLoS One ; 11(5): e0156596, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27243816

RESUMO

The study of cholinergic signaling in the mammalian CNS has been greatly facilitated by the advent of mouse lines that permit the expression of reporter proteins, such as opsins, in cholinergic neurons. However, the expression of opsins could potentially perturb the physiology of opsin-expressing cholinergic neurons or mouse behavior. Indeed, the published literature includes examples of cellular and behavioral perturbations in preparations designed to drive expression of opsins in cholinergic neurons. Here we investigate expression of opsins, cellular physiology of cholinergic neurons and behavior in two mouse lines, in which channelrhodopsin-2 (ChR2) and archaerhodopsin (Arch) are expressed in cholinergic neurons using the Cre-lox system. The two mouse lines were generated by crossing ChAT-Cre mice with Cre-dependent reporter lines Ai32(ChR2-YFP) and Ai35(Arch-GFP). In most mice from these crosses, we observed expression of ChR2 and Arch in only cholinergic neurons in the basal forebrain and in other putative cholinergic neurons in the forebrain. In small numbers of mice, off-target expression occurred, in which fluorescence did not appear limited to cholinergic neurons. Whole-cell recordings from fluorescently-labeled basal forebrain neurons revealed that both proteins were functional, driving depolarization (ChR2) or hyperpolarization (Arch) upon illumination, with little effect on passive membrane properties, spiking pattern or spike waveform. Finally, performance on a behavioral discrimination task was comparable to that of wild-type mice. Our results indicate that ChAT-Cre x reporter line crosses provide a simple, effective resource for driving indicator and opsin expression in cholinergic neurons with few adverse consequences and are therefore an valuable resource for studying the cholinergic system.


Assuntos
Potenciais de Ação/fisiologia , Prosencéfalo Basal/metabolismo , Neurônios Colinérgicos/metabolismo , Animais , Channelrhodopsins , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Opsinas/metabolismo , Transdução de Sinais
5.
PLoS One ; 10(12): e0144760, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26657323

RESUMO

Optogenetic techniques are used widely to perturb and interrogate neural circuits in behaving animals, but illumination can have additional effects, such as the activation of endogenous opsins in the retina. We found that illumination, delivered deep into the brain via an optical fiber, evoked a behavioral artifact in mice performing a visually guided discrimination task. Compared with blue (473 nm) and yellow (589 nm) illumination, red (640 nm) illumination evoked a greater behavioral artifact and more activity in the retina, the latter measured with electrical recordings. In the mouse, the sensitivity of retinal opsins declines steeply with wavelength across the visible spectrum, but propagation of light through brain tissue increases with wavelength. Our results suggest that poor retinal sensitivity to red light was overcome by relatively robust propagation of red light through brain tissue and stronger illumination of the retina by red than by blue or yellow light. Light adaptation of the retina, via an external source of illumination, suppressed retinal activation and the behavioral artifact without otherwise impacting behavioral performance. In summary, long wavelength optogenetic stimuli are particularly prone to evoke behavioral artifacts via activation of retinal opsins in the mouse, but light adaptation of the retina can provide a simple and effective mitigation of the artifact.


Assuntos
Artefatos , Neurônios Colinérgicos/fisiologia , Discriminação Psicológica/efeitos da radiação , Potenciais Evocados Visuais/fisiologia , Optogenética , Reconhecimento Visual de Modelos/fisiologia , Retina/fisiologia , Adaptação Fisiológica , Animais , Channelrhodopsins , Neurônios Colinérgicos/citologia , Neurônios Colinérgicos/efeitos da radiação , Discriminação Psicológica/fisiologia , Potenciais Evocados Visuais/efeitos da radiação , Feminino , Expressão Gênica , Luz , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microeletrodos , Fibras Ópticas , Reconhecimento Visual de Modelos/efeitos da radiação , Estimulação Luminosa , Retina/citologia , Retina/efeitos da radiação , Técnicas Estereotáxicas , Análise e Desempenho de Tarefas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...