Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 40(8): 248, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904740

RESUMO

This manuscript presents a new report on the in vitro antimicrobial photo-inactivation of foodborne microorganisms (Salmonella spp. and Listeria monocytogenes) using tetra-cationic porphyrins. Isomeric tetra-cationic porphyrins (3MeTPyP, 4MeTPyP, 3PtTPyP, and 4PtTPyP) were tested, and antimicrobial activity assays were performed at specific photosensitizer concentrations under dark and white-light LED irradiation conditions. Among the tested bacterial strains, 4MeTPyP exhibited the highest efficiency, inhibiting bacterial growth within just 60 min at low concentrations (17.5 µM). The minimal inhibitory concentration of 4MeTPyP increased when reactive oxygen species scavengers were present, indicating the significant involvement of singlet oxygen species in the photooxidation mechanism. Furthermore, the checkerboard assay testing the association of 4MeTPyP showed an indifferent effect. Atomic force microscopy analyses and dynamic simulations were conducted to enhance our understanding of the interaction between this porphyrin and the strain's membrane.


Assuntos
Biofilmes , Listeria monocytogenes , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Fármacos Fotossensibilizantes , Porfirinas , Porfirinas/farmacologia , Porfirinas/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Biofilmes/efeitos dos fármacos , Listeria monocytogenes/efeitos dos fármacos , Microbiologia de Alimentos , Antibacterianos/farmacologia , Antibacterianos/química , Microscopia de Força Atômica , Espécies Reativas de Oxigênio/metabolismo , Luz , Oxigênio Singlete/metabolismo , Oxigênio Singlete/química
2.
Pharmaceutics ; 15(5)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37242753

RESUMO

Onychomycosis is a prevalent nail fungal infection, and Candida albicans is one of the most common microorganisms associated with it. One alternative therapy to the conventional treatment of onychomycosis is antimicrobial photoinactivation. This study aimed to evaluate for the first time the in vitro activity of cationic porphyrins with platinum(II) complexes 4PtTPyP and 3PtTPyP against C. albicans. The minimum inhibitory concentration of porphyrins and reactive oxygen species was evaluated by broth microdilution. The yeast eradication time was evaluated using a time-kill assay, and a checkerboard assay assessed the synergism in combination with commercial treatments. In vitro biofilm formation and destruction were observed using the crystal violet technique. The morphology of the samples was evaluated by atomic force microscopy, and the MTT technique was used to evaluate the cytotoxicity of the studied porphyrins in keratinocyte and fibroblast cell lines. The porphyrin 3PtTPyP showed excellent in vitro antifungal activity against the tested C. albicans strains. After white-light irradiation, 3PtTPyP eradicated fungal growth in 30 and 60 min. The possible mechanism of action was mixed by ROS generation, and the combined treatment with commercial drugs was indifferent. The 3PtTPyP significantly reduced the preformed biofilm in vitro. Lastly, the atomic force microscopy showed cellular damage in the tested samples, and 3PtTPyP did not show cytotoxicity against the tested cell lines. We conclude that 3PtTPyP is an excellent photosensitizer with promising in vitro results against C. albicans strains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...