Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(21): 38481-38491, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36258412

RESUMO

The processes leading to the N2 + lasing are rather complex and even the population distribution after the pump laser excitation is unknown. In this paper, we study the population distribution at electronic and vibrational levels in N2 + driven by ultra-short laser pulse at the wavelengths of 800 nm and 400 nm by using the quantum-mechanical time-domain incoherent superposition model based on the time-dependent Schrödinger equation and the quasi-classical model assuming instantaneous ionization injection described by density matrix. It is shown that while both models provide qualitatively similar results, the quasi-classical instantaneous ionization injection model underestimates the population inversions corresponding to the optical transitions at 391 nm, 423 nm and 428 nm due to the assumption of quantum mixed states at the ionization time. A fast and accurate correction to this error is proposed. This work solidifies the theoretical models for population at vibrational states in N2 + and paves the way to uncover the mechanism of the N2 + lasing.

2.
Opt Lett ; 46(6): 1253-1256, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33720160

RESUMO

The time profile of a lasing signal at 391.4 nm emitted by a weakly ionized gas of nitrogen molecules at low pressure is measured under double excitation with intense femtosecond laser pulses at 800 nm. An abrupt decrease in emission occurs at the time of arrival of the second pulse. It is explained by a transfer of population from ground to first excited ionic level and by a disruption of coherence, terminating the conditions for lasing in a V-scheme without population inversion.

3.
Opt Lett ; 45(17): 4670-4673, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32870827

RESUMO

Cavity-free lasing of N2+ induced by a femtosecond laser pulse at 800 nm is nearly totally suppressed by a delayed twin control pulse. We explain this surprising effect within the V-scheme of lasing without population inversion. A fast transfer of population between nitrogen ionic states X2Σg+ and A2Πu, induced by the second pulse, terminates the conditions for amplification in the system. The appearance of short lasing bursts at delays corresponding to revivals of rotational wave packets is explained along the same lines.

4.
Phys Rev Lett ; 123(24): 243203, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31922877

RESUMO

Nitrogen molecules are promoted to excited neutral states during femtosecond laser pulse filamentary propagation in atmosphere, leading to a characteristic UV fluorescence. Using a laser-induced fluorescence depletion technique, we measure the formation dynamics of these excited neutral nitrogen molecules with femtosecond time resolution. We find that the excited neutral molecules are formed in an unexpected ultrafast timescale of ∼4 ps at 1 bar and ∼120 ps at 30 mbar pressure. From this observation we deduce that the excitation of neutral N_{2} occurs via multiple collisions with hot free electrons. Numerical simulations based on rate equations reproduce well this ultrafast formation time and its dependence on gas pressure, and thus support this interpretation.

5.
Phys Rev Lett ; 119(20): 203205, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29219339

RESUMO

Nitrogen molecules in ambient air exposed to an intense near-infrared femtosecond laser pulse give rise to cavity-free superradiant emission at 391.4 and 427.8 nm. An unexpected pulse duration-dependent cyclic variation of the superradiance intensity is observed when the central wavelength of the femtosecond pump laser pulse is finely tuned between 780 and 820 nm, and no signal occurs at the resonant wavelength of 782.8 nm (2ω_{782.8 nm}=ω_{391.4 nm}). On the basis of a semiclassical recollision model, we show that an interference of dipolar moments of excited ions created by electron recollisions explains this behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...