Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 14: 1328147, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482200

RESUMO

Purpose: This study develop a novel linear energy transfer (LET) optimization method for intensity-modulated proton therapy (IMPT) with minimum monitor unit (MMU) constraint using the alternating direction method of multipliers (ADMM). Material and methods: The novel LET optimization method (ADMM-LET) was proposed with (1) the dose objective and the LET objective as the optimization objective and (2) the non-convex MMU threshold as a constraint condition. ADMM was used to solve the optimization problem. In the ADMM-LET framework, the optimization process entails iteratively solving the dose sub-problem and the LET sub-problem, simultaneously ensuring compliance with the MMU constraint. Three representative cases, including brain, liver, and prostate cancer, were utilized to evaluate the performance of the proposed method. The dose and LET distributions from ADMM-LET were compared to those obtained using the published iterative convex relaxation (ICR-LET) method. Results: The results demonstrate the superiority of ADMM-LET over ICR-LET in terms of LET distribution while achieving a comparable dose distribution. More specifically, for the brain case, the maximum LET (unit: keV/µm) at the optic nerve decreased from 5.45 (ICR-LET) to 1.97 (ADMM-LET). For the liver case, the mean LET (unit: keV/µm) at the clinical target volume increased from 4.98 (ICR-LET) to 5.50 (ADMM-LET). For the prostate case, the mean LET (unit: keV/µm) at the rectum decreased from 2.65 (ICR-LET) to 2.14 (ADMM-LET). Conclusion: This study establishes ADMM-LET as a new approach for LET optimization with the MMU constraint in IMPT, offering potential improvements in treatment outcomes and biological effects.

2.
Phys Med Biol ; 69(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38041874

RESUMO

Objective.Delivery efficiency is the bottleneck of spot-scanning proton arc therapy (SPArc) because of the numerous energy layers (ELs) ascending switches. This study aims to develop a new algorithm to mitigate the need for EL ascending via water equivalent thickness (WET) sector selection followed by particle swarm optimization (SPArc-particle swarm).Approach.SPArc-particle swarmdivided the full arc trajectory into the optimal sectors based on K-means clustering analysis of the relative mean WET. Within the sector, particle swarm optimization was used to minimize the total energy switch time, optimizing the energy selection integrated with the EL delivery sequence and relationship. This novel planning framework was implemented on the open-source platform matRad (Department of Medical Physics in Radiation Oncology, German Cancer Research Center-DKFZ). Three representative cases (brain, liver, and prostate cancer) were selected for testing purposes. Two kinds of plans were generated: SPArc_seq and SPArc-particle swarm. The plan quality and delivery efficiency were evaluated.Main results. With a similar plan quality, the delivery efficiency was significantly improved using SPArc-particle swarmcompared to SPArc_seq. More specifically, it reduces the number of ELs ascending switching compared to the SPArc_seq (from 21 to 7 in the brain, from 21 to 5 in the prostate, from 21 to 6 in the liver), leading to a 16%-26% reduction of the beam delivery time (BDT) in the SPArc treatment.Significance. A novel planning framework, SPArc-particle swarm, could significantly improve the delivery efficiency, which paves the roadmap towards routine clinical implementation.


Assuntos
Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Masculino , Dosagem Radioterapêutica , Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Algoritmos , Terapia com Prótons/métodos
3.
Phys Med Biol ; 68(21)2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37774715

RESUMO

Objective. To investigate the impact of various delivery tolerance window settings on the treatment delivery time and dosimetric accuracy of spot-scanning proton arc (SPArc) therapy.Approach. SPArc plans were generated for three representative disease sites (brain, lung, and liver cancer) with an angle sampling frequency of 2.5°. An in-house dynamic arc controller was used to simulate the arc treatment delivery with various tolerance windows (±0.25, ±0.5, ±1, and ±1.25°). The controller generates virtual logfiles during the arc delivery simulation, such as gantry speed, acceleration and deceleration, spot position, and delivery sequence, similar to machine logfiles. The virtual logfile was then imported to the treatment planning system to reconstruct the delivered dose distribution and compare it to the initial SPArc nominal plan. A three-dimensional gamma index was used to quantitatively assess delivery accuracy. Total treatment delivery time and relative lost time (dynamic arc delivery time-fix beam delivery time)/fix beam delivery time) were reported.Main Results. The 3D gamma passing rate (GPR) was greater than 99% for all cases when using 3%/3 mm and 2%/2 mm criteria and the GPR (1%/1 mm criteria) degraded as the tolerance window opens. The total delivery time for dynamic arc delivery increased with the decreasing delivery tolerance window length. The average delivery time and the relative lost time (%) were 630 ± 212 s (253% ± 68%), 322 ± 101 s (81% ± 31%), 225 ± 60 s (27% ± 16%), 196 ± 41 s (11% ± 6%), 187 ± 29 s (6% ± 1%) for tolerance windows ±0.25, ±0.5, ±1, and ±1.25° respectively.Significance. The study quantitatively analyzed the dynamic SPArc delivery time and accuracy with different delivery tolerance window settings, which offer a critical reference in the future SPArc plan optimization and delivery controller design.


Assuntos
Terapia com Prótons , Radioterapia de Intensidade Modulada , Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Encéfalo , Cintilografia , Dosagem Radioterapêutica , Terapia com Prótons/métodos
4.
Artigo em Inglês | MEDLINE | ID: mdl-35677380

RESUMO

Objective: Heyi disease, Xila disease, and Badagan disease are three common diseases in Mongolian medicine. The changes in intestinal microbiota may be associated with the occurrence, development, and treatment of these diseases. This study aimed to investigate the effects of herbal treatment on intestinal microbiota and serum metabolites in rats with these three diseases. Methods: Firstly, Heyi, Xila, and Badagan disease model rats were established by environmental, diet, and drug intervention. Then, 16S rRNA gene sequencing and metabolomics analysis were used to analyze the changes in intestinal microbiota and serum metabolites after treatment. PICRUSt analysis was applied to predict the potential functions of intestinal microbiota, and OPLS-DA multivariate model was applied to screen differential serum metabolites. Results: 16S rRNA gene sequencing showed that herbal treatment significantly increased the species diversity and changed the composition of intestinal microbiota in Heyi disease and Xila disease rats. After treatment, there were 10, 9, and 3 bacterial biomarkers that were increased in Heyi, Xila, and Badagan disease rats, respectively. In the Heyi disease model, treatment resulted in 45 differential serum metabolites, involving 4 pathways. In the Badagan disease model, treatment resulted in 62 differential serum metabolites, involving 4 pathways. However, there was no significant difference in serum metabolites between TreatB and ConB in the Xila disease model. Conclusions: Herbal treatment significantly changed the intestinal microbiota and serum metabolites of rats with three Mongolian medicine diseases.

5.
Artigo em Inglês | MEDLINE | ID: mdl-34394382

RESUMO

BACKGROUND: Mongolian medicine is a systematic theoretical system, which is based on the balance among Heyi, Xila, and Badagan. However, the underlying mechanisms remain unclear. This study aimed to explore the characteristics of intestinal microbiota and metabolites in different rat models of Mongolian medicine. METHODS: After establishing rat models of Heyi, Xila, and Badagan, we integrated 16S rRNA gene sequencing and metabolomics. RESULTS: Heyi, Xila, and Badagan rats had significantly altered intestinal microbial composition compared with rats in the MCK group. They showed 11, 18, and 8 significantly differential bacterial biomarkers and 22, 11, and 15 differential metabolites, respectively. The glucosinolate biosynthesis pathway was enriched only in Heyi rats; the biosynthesis of phenylpropanoids pathway and phenylpropanoid biosynthesis pathway were enriched only in Xila rats; the isoflavonoid biosynthesis pathway, the glycine, serine, and threonine metabolism pathway, and the arginine and proline metabolism pathway were enriched only in Badagan rats. CONCLUSIONS: The intestinal microbiota, metabolites, and metabolic pathways significantly differed among Heyi, Xila, and Badagan rats compared with control group rats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...