Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 15524, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330966

RESUMO

We developed and designed a bifacial four-terminal perovskite (PVK)/crystalline silicon (c-Si) heterojunction (HJ) tandem solar cell configuration albedo reflection in which the c-Si HJ bottom sub-cell absorbs the solar spectrum from both the front and rear sides (reflected light from the background such as green grass, white sand, red brick, roofing shingle, snow, etc.). Using the albedo reflection and the subsequent short-circuit current density, the conversion efficiency of the PVK-filtered c-Si HJ bottom sub-cell was improved regardless of the PVK top sub-cell properties. This approach achieved a conversion efficiency exceeding 30%, which is higher than those of both the top and bottom sub-cells. Notably, this efficiency is also greater than the Schockley-Quiesser limit of the c-Si solar cell (approximately 29.43%). The proposed approach has the potential to lower industrial solar cell production costs in the near future.

2.
ACS Appl Mater Interfaces ; 13(8): 10181-10190, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33617239

RESUMO

Solar-driven hydrogen generation is one of the most promising approaches for building a sustainable energy system. Photovoltaic-assisted photoanodes can help to reduce the overpotential of water splitting in photoelectrochemical (PEC) cells. Transparent photoanodes can improve light-conversion efficiency by absorbing high-energy photons while transmitting lower energy photons to the photocathode for hydrogen production. In this work, transparent photoanodes were implemented by forming metal-oxide junctions of NiO/TiO2 heterostructures for creating the photovoltaic effect. The photovoltaic-induced transparent photoelectrode (PTPE) provides the photovoltage (0.7 V), which efficiently reduces the onset potential voltage by -0.38 V versus the reversible hydrogen electrode (RHE), as compared to 0.17 V versus RHE for a single-TiO2 photoanode. The PEC cell has a high photocurrent of 1.68 mA at 1.23 V with respect to the RHE. The chemical endurance of metal-oxides maintains the stability of the PTPE for over 100 h in an alkaline electrolyte of 0.1 M KOH. The results of this study reveal that combining multiple PTPE cells to create a stacked photoanode enhances the photocurrent roughly in proportion to the number of PTPE cells. This design scheme for optimizing the light-conversion efficiency in a PTPE-photoanode system is promising for creating robust systems for on-site energy producers.

3.
Nanotechnology ; 32(9): 095703, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33147576

RESUMO

Polycrystalline permalloy 2D nanotraps with a thickness of 20 nm were studied using a Lorentz microscope associated with micro-magnetic simulations. Each trap was designed to create a single head-to-head domain wall. The traps consist of a few nanowires with an in-plane dimension of w nm × 1000 nm (w = 150, 200 and 250 nm). Some structures with an injection pad were also designed to create a single domain wall and propagate it through the structure with the said injection pad. A few of them were patterned to study the nucleation and propagation behavior of such nucleated domain walls using both horizontal magnetic field and injection pad approaches. The case of a domain wall created at the first corner of the trap with a wire width of 200 nm was systematically studied, while single and multiple domain walls can also be created and propagated with or without an injection structure. The characteristics of such movements were exploited with an emphasis on a single head-to-head domain wall.

4.
J Nanosci Nanotechnol ; 20(4): 2214-2222, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31492230

RESUMO

Forming heterostructures based on hybrid photocatalysts has been considered as one of the most effective techniques for improving the photocatalytic efficacy of semiconductor photocatalysts. To address this issue, this article describes ZnO/TiO2 heterojunction thin films that were produced via the direct current reaction magnetron sputtering technique and with varying thickness of TiO2 coating. The structural, morphological, and optical features were thoroughly characterized by X-ray diffraction, scanning electron microscope, photoluminescence, and ultra-violet-visible transmission spectra. The photocatalytic and antibacterial ability were assessed by the photo-degradation of methyl orange (MO) aqueous solution and count method of E. coli bacteria. The results demonstrated that the photocatalytic and antimicrobial efficacy of the ZnO/TiO2 heterojunction was found to vary depending on the morphology of the TiO2 layer. In addition, their photocatalytic (91% MO degradation within 150 min) and antimicrobial efficacy (92.7% antibacterial efficiency within 90 min) were higher than the efficiency of either material alone. This could can be ascribed to the photogenerated charge carrier efficiency and hierarchical nanostructure with a large surface area. The mechanism for the improved photocatalytic performance has been discussed in detail.


Assuntos
Óxido de Zinco , Antibacterianos/farmacologia , Catálise , Escherichia coli , Titânio , Óxido de Zinco/farmacologia
5.
RSC Adv ; 9(44): 25847-25860, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35530102

RESUMO

In this study, the biosorption mechanisms of methylene blue (MB) and Cr(iii) onto pomelo peel collected from our local fruits are investigated by combining experimental analysis with ab initio simulations. Factors that affect the adsorption such as pH, adsorption time, adsorbent dosage and initial adsorbate concentration, are fully considered. Five isotherm models-Langmuir, Freundlich, Sips, Temkin, and Dubinin-Radushkevich-are employed to estimate the capacity of pomelo peel adsorption, whereas four kinetic models-pseudo-first-order, pseudo-second-order, Elovich and intra-diffusion models-are also used to investigate the mechanisms of the uptake of MB and Cr(iii) onto the pomelo fruit peel. The maximum biosorption capacities calculated from the Langmuir models for MB and Cr(iii) at 303 K are, 218.5 mg g-1 and 11.3 mg g-1, respectively. In particular, by combining, for the first time, the experimental FT-IR spectra with those obtained from ab initio calculations, we are able to demonstrate that the primary adsorption mechanisms of the uptake of MB onto pomelo fruit peel are electrostatic attraction and hydrogen-bond formations, whereas the adsorption mechanisms for Cr(iii) are electrostatic attraction and n-d interactions.

6.
Sci Rep ; 8(1): 15386, 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30337570

RESUMO

We investigated high-efficiency two-terminal tandem photovoltaic (PV) devices consisting of a p/i/n thin film silicon top sub-cell (p/i/n-TFS) and a heterojunction with an intrinsic thin-layer (HIT) bottom sub-cell. We used computer simulations and experimentation. The short-circuit current density (Jsc) of the top sub-cell limits the Jsc of the p/i/n-TFS/HIT tandem PV device. In order to improve the Jsc of the top sub-cell, we used a buffer-layer at the p/i and i/n interface and a graded forward-profile (f-p) band gap hydrogenated amorphous silicon germanium active layer, namely i-layer, in the top sub-cell. These two approaches showed a remarkable raise of the top sub-cell's Jsc, leading to the increase of the Jsc of the PV tandem device. Furthermore, in order to minimize the optical loss, we employed a double-layer anti-reflective coating (DL-ARC) with a magnesium fluoride/indium tin oxide double layer on the front surface. The reduction in broadband reflection on the front surface (with the DL-ARC) and the enhanced optical absorption in the long wavelength region (with the graded f-p band gap) resulted in the high Jsc, which helped achieve the efficiency up to 16.04% for inorganic-inorganic c-Si-based tandem PV devices.

7.
RSC Adv ; 8(26): 14539-14551, 2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-35540750

RESUMO

We present a Lorentz microscopy study of polycrystalline permalloy 2D nanostructures with a thickness of 20 nm. Each structure was designed as a single domain wall trap. The trap comprises two horizontal nanowires with an in-plane dimension of 200 × 1000 nm2, and three tilted pads with different shapes. These structures allow us to create head-to-head domain walls, and these created walls can propagate in the structures by an external magnetic field. These designed traps were simulated using the micro-magnetic OOMMF simulation software. Those nanostructures were also patterned using electron beam lithography and focussed-ion beam techniques. This aims to determine the geometric parameters required to propagate a single magnetic domain wall in these structures reproducibly. Among the studied structures with one and two field directions, we found that the motion of a domain wall can be reproducibly driven by two alternative field directions in a trap which consists of the two horizontal nanowires and three 90°-tilted ones. We investigated systematically the viability of both single field and sequential switching of two field directions. Lorentz microscopy and micro-magnetic simulation results indicate that the propagation of a domain wall is strongly affected by the precise shape of the corner sections linking the trap elements, and the angles of the horizontal nanowires and tilted pads. Domain wall pinning and transformation of wall chirality are strongly correlated to the trap geometries. Our results are vital to design an optimal trap which supports a reproducible domain wall motion. This might also support a greater understanding of domain wall creation and propagation in magnetic nanowires which are of interest for concepts of high-density and ultrafast nonvolatile data storage devices, including racetrack memory and magnetic logic gates.

8.
RSC Adv ; 8(73): 41828-41835, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-35558803

RESUMO

A 2D polycrystalline permalloy domain wall trap nanostructure with a thickness of 20 nm was studied. The structure was alternatively designed and patterned using QCAD/L-Edit software and focused-ion beam technique. With this design, a magnetic domain wall can be created and propagated with a sequence of two-field directions in a Lorentz microscopy. The trap consists of two horizontal nanowires and three 90°-tilted ones. Each nanowire has an in-plane dimension of 200 × 1000 nm2. The trap corners were curved to allow a created domain wall that easily moves through the structure. A head-to-head domain-wall aims to create using a continuous field, this created wall can be propagated in the trap using a sequence of two-field directions. The designed trap was simulated using the Object Oriented Micro-Magnetic Framework software. Lorentz microscopy and simulation results indicate that the propagation of a domain wall is strongly affected by the precise roughness behavior of the trap elements. Domain wall pinning and transformation of wall chirality are sensitively correlated to the corner sections of the trap structure and field directions at a certain regime. Using the two-field direction method enables us to explore characteristics of the corner sections of the patterned trap nanostructure. This study is vital to fabricate an optimal nano-trap which supports a reproducible domain wall motion. This also suggests a useful method for the domain wall propagation using sequences of two-field directions. This work provides a better understanding of wall creation and propagation in polycrystalline permalloy curved nanowires which are of interest for concepts of nonvolatile data storage devices.

9.
J Nanosci Nanotechnol ; 15(3): 2241-6, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26413646

RESUMO

We investigated thin film silicon solar cells with boron doped hydrogenated nanocrystalline silicon/ hydrogenated amorphous silicon oxide [p-type nc-Si:H/a-SiOx:H] layer. First, we researched the bandgap engineering of diborane (B2H6) doped wide bandgap hydrogenated nanocryslline silicon (p-type nc-Si:H) films, which have excellent electrical properties of high dark conductivity, and low activation energy. The films prepared with lower doping ratio and higher hydrogen dilution ratio had higher optical gap (Eg), with higher dark conductivity (σ(d)), and lower activation energy (Ea). We controlled Eg from 2.10 eV to 1.75 eV, with σ(d) from 1.1 S/cm to 7.59 x 10(-3) S/cm, and Ea from 0.040 eV to 0.128 eV. Next, we focused on the fabrication of thin film silicon solar cells. By inserting p-type nc-Si:H film into the thin film silicon solar cells, we achieved a remarkable increase in the built-in potential from 0.803 eV to 0.901 eV. By forming p-type nc-Si:H film between SnO2:F/ZnO:Al (30 nm) and p-type a-SiOx:H layer, the solar cell properties of open circuit voltage (Voc), short circuit current density (Jsc), and efficiency (η) were improved by 3.7%, 9.2%, and 9.8%, respectively.

10.
J Nanosci Nanotechnol ; 15(3): 2247-52, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26413647

RESUMO

Transparent conductive oxides (TCOs) have been widely used as transparent electrodes for opto-electronic devices, such as solar cells, flat-panel displays, and light-emitting diodes, because of their unique characteristics of high optical transmittance and low electrical resistivity. Among various TCO materials, zinc oxide based films have recently received much attention because they have advantages over commonly used indium and tin-based oxide films. Most TCO films, however, exhibit valleys of transmittance in the wavelength range of 550-700 nm, lowering the average transmittance in the visible region and decreasing short-circuit current (Isc) of solar cells. A TCO/Ag/TCO multi-layer structure has emerged as an attractive alternative because it provides optical characteristics without the valley of transmittance compared with a 100-nm-thick single-layer TCO. In this article, we report the electrical, optical and surface properties of TCO/Ag/TCO. These multi-layers were deposited at room temperature with various Ag film thicknesses from 5 to 15 nm while the thickness of TCO thin film was fixed at 40 nm. The TCO/Ag/TCO multi-layer with a 10-nm-thick Ag film showed optimum transmittance in the visible (400-800 nm) wavelength region. These multi-layer structures have advantages over TCO layers of the same thickness.

11.
J Nanosci Nanotechnol ; 14(12): 9237-41, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25971043

RESUMO

Pulsed DC magnetron sputtered indium tin oxide (ITO) films deposited on glass substrates with lowest resistivity of 2.62 x 10(-4) Ω x cm and high transmittance of about 89% in the visible wavelength region. We report the enhancement of ITO work function (Φ(ITO)) by the variation of oxygen (O2) flow rate and N2O surface plasma treatment. The Φ(ITO) increased from 4.43 to 4.56 eV with the increase in O2 flow rate from 0 to 4 sccm while surface treatment of N2O plasma further enhanced the ITO work function to 4.65 eV. The crystallinity of the ITO films improved with increasing O2 flow rate, as revealed by XRD analysis. The ITO work function was increased by the interfacial dipole resulting from the surface rich in O- ions and by the dipole moment formed at the ITO surface during N2O plasma treatment. The ITO films with high work functions can be used to modify the front barrier height in heterojunction with intrinsic thin layer (HIT) solar cells.

12.
J Nanosci Nanotechnol ; 14(12): 9258-62, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25971047

RESUMO

The back surface field (BSF) plays an important role for the efficiency of the heterojunction intrinsic thin-film (HIT) solar cell. In this paper, the effect of thickness variation in n-type micro crystalline BSF layer was investigated by Raman and spectroscopy ellipsometry. As we increase the crystalline volume fraction (X(c)) from 6% to 59%, the open circuit voltage (V(oc)) increases from 573 to 696 mV with increase in fill factor from 59% to 71%. However, we observed that V(oc) and FF are decreased over 59% X(c) of n-type µc-Si:H BSF layer. It seems that higher X(c) micro layer include lots of defects. The quantum efficiency (QE) measurements were demonstrated on optimized thickness of n-doped micro BSF layer. In the long wavelengths region, the QE slightly increases with increasing the n-type µc-Si:H BSF layer thickness from 10 to 40 nm because of BSF effect, whereas the QE decreases when n-type µc-Si:H BSF layer thickness increases from 40 to 120 nm due to defects in the layer. The performance of heterojunction solar cell device was improved with the optimized thickness on n-doped micro BSF layer the best photo voltage parameters of the device were found to be V(oc) of 696 mV, short-circuit current density of 36.09 mA/cm2 and efficiency of 18.06% at n-doped micro BSF layer thickness of 40 nm.

13.
J Nanosci Nanotechnol ; 13(11): 7551-5, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24245290

RESUMO

In this paper, we present a detailed study on the local back contact (LBC) formation of rear-surface-passivated silicon solar cells, where both the LBC opening and metallization are realized by one-step alloying of a dot of fine pattern screen-printed aluminum paste with the silicon substrate. Based on energy dispersive spectrometer (EDS) and scanning electron microscopy (SEM) characterizations, we suggest that the aluminum distribution and the silicon concentration determine the local-back-surface-field (Al-p+) layer thickness, resistivity of the Al-p+ and hence the quality of the Al-p+ formation. The highest penetration of silicon concentration of 78.17% in aluminum resulted in the formation of a 5 microm-deep Al-p+ layer, and the minimum LBC resistivity of 0.92 x 10-6 omega cm2. The degradation of the rear-surface passivation due to high temperature of the LBC formation process can be fully recovered by forming gas annealing (FGA) at temperature and hydrogen content of 450 degrees C and 15%, respectively. The application of the optimized LBC of rear-surface-passivated by a dot of fine pattern screen(-) printed aluminum paste resulted in efficiency of up to 19.98% for the p-type czochralski (CZ) silicon wafers with 10.24 cm2 cell size at 649 mV open circuit voltage. By FGA for rear-surface passivation recovery, efficiencies up to 20.35% with a V(OC) of 662 mV, FF of 82%, and J(SC) of 37.5 mA/cm2 were demonstrated.


Assuntos
Alumínio/química , Cristalização/métodos , Fontes de Energia Elétrica , Eletrodos , Nanopartículas Metálicas/química , Silício/química , Energia Solar , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...