Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 27(14): 17258-17267, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32152859

RESUMO

The occurrence and persistence of pharmaceutical products (PPs) in the environment have recently been well-documented and are a major concern for public health. Their incidence in aquatic ecosystems is the result of their direct release without any prior treatment or insufficient wastewater treatment. Therefore, an efficient and safe posttreatment process for removing PPs must be developed. In this study, we focused on the ability of photocatalysis or combined photocatalysis and biodegradation to effectively and safely remove diclofenac (DCF) and its by-products from water. The heterogeneous photocatalysis system was based on bio-sourced activated carbon obtained from Argania spinosa tree nutshells and Degussa P25 titanium dioxide (ACP-TiO2), and biodegradation involved Pseudomonas aeruginosa. Toxicity tests were conducted with zebrafish embryos to evaluate the applicability of the treatment processes. The results showed that photocatalytic treatment with 0.1 mg/L of ACP-TiO2 9% for 7.5 h is sufficient to eliminate DCF (50 mg L-1) and its by-products from water. Low levels of malformation (< 20%) were detected in zebrafish embryos treated with photocatalyzed DCF solutions at 1, 5, and 7 mg L-1 after 4 days of exposure. After 3 h of incubation, P. aeruginosa was found to reduce the toxicity of DCF (10 mg L-1) photocatalyzed for 2 and 4 h. Additional studies should be conducted to elucidate the biodegradation mechanism.


Assuntos
Sapotaceae , Poluentes Químicos da Água/análise , Animais , Catálise , Carvão Vegetal , Diclofenaco , Ecossistema , Pseudomonas aeruginosa , Titânio , Árvores , Peixe-Zebra
2.
Foods ; 8(11)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739565

RESUMO

The objective of this study was to assess Lebanese population exposure to trace elements (TEs) via white pita consumption. A survey of white pita consumption was achieved among one thousand Lebanese individuals, grouped into adults (above 15 years old, men, and women) and young people (6-9 and 10-14 years old). The most consumed pita brands, labeled B1, B2, and B3, were selected. Levels of TEs (i.e., As, Cd, Co, Cr, Hg, Ni, and Pb) in B1, B2, B3 pitas were measured. The highest contents of TEs in pitas were: Ni (1292 µg/kg) and Co (91 µg/kg) in B1; As (400 µg/kg) and Cd (< 15 µg/kg) in B2; Cr (363 µg/kg), Pb (260 µg/kg), and Hg (0.89 µg/kg) in B3. The pita brand B3 was the source of the highest TEs exposure, except for Ni for which it was B1. Daily exposures to TEs due to the fact of pita consumption were compared to safety levels. There were no safety concerns for Hg, Cd, Cr or Co (except the 95th percentile of 6-9 years old). An excess of the Ni tolerable daily intake was observed for the most exposed populations. The very low margins of exposure for As and Pb suggest a worrying risk for the Lebanese population.

3.
Environ Monit Assess ; 190(8): 485, 2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-30039319

RESUMO

In this work, four major Lebanese rivers were investigated, the Damour, Ibrahim, Kadisha, and Orontes, which are located in South, Central, and North Lebanon and Bekaa Valley, respectively. Five sampling sites were considered from upstream to downstream, and 12 sampling campaigns over four seasons were conducted during 2010-2011. Thirty-seven physicochemical parameters and five microbial tests were evaluated. A principal component analysis (PCA) was used for data evaluation. The first PCA, applied to the matrix-containing data that was acquired on all four rivers, showed that each river was distinct in terms of trophic state and pollution sources. The Ibrahim River was more likely to be polluted with industrial and human discharges, while the Kadisha River was severely polluted with anthropogenic human wastes. The Orontes and Damour rivers seemed to have the lowest rates of water pollution, especially the Orontes, which had the best water quality. PCA was also performed on individual data matrices for each river. In all cases, the results showed that the springs of each river have good water quality and are free from severe contamination. The other monitoring sites on each river were likely exposed to human activities and showed important spatial evolution. Through this work, a spatiotemporal fingerprint was obtained for each studied river, defining a "water mass reference" for each one. This model could be used as a monitoring tool for subsequent water quality surveys to highlight any temporal evolution of water quality. Graphical abstract ᅟ.


Assuntos
Monitoramento Ambiental/métodos , Rios/química , Poluentes Químicos da Água/análise , Água Doce/química , Líbano , Nascentes Naturais , Análise de Componente Principal , Estações do Ano , Análise Espaço-Temporal , Água/análise , Poluição da Água/estatística & dados numéricos , Qualidade da Água
4.
Environ Monit Assess ; 188(12): 684, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27878544

RESUMO

Surface water quality monitoring constitutes a crucial and important step in any water quality management system. Twenty-three physicochemical and microbiological parameters were assessed in surface water samples collected from the Arka River located in the Akkar District, north of Lebanon. Eight sampling locations were considered along the river and seven sampling campaigns were performed in order to evaluate spatial and temporal influences. The extraction of relevant information from this relatively large data set was done using principal component analysis (PCA), being a very well established chemometric tool in this field. In a first step, extracted PCA loadings revealed the implication of several physicochemical parameters in the discriminations and trends highlighted by PCA scores, mainly due to soil leaching and seawater intrusion. However, further investigations showed the implication of organic and bacterial parameters in the discrimination of stations in the Akkar flatland. These discriminations probably refer to anthropogenic pollution coming from the agricultural area and the surrounding villages. Specific ultraviolet absorption (SUVA) indices confirmed these findings since values decreased for samples collected across the villages and the flatland, indicating an increase in anthropogenic dissolved organic matter. This study will hopefully help the national and local authorities to ameliorate the surface water quality management, enabling its proper use for irrigation purposes.


Assuntos
Rios/química , Rios/microbiologia , Qualidade da Água , Monitoramento Ambiental/métodos , Líbano , Análise de Componente Principal
5.
Water Res ; 45(17): 5654-64, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21920579

RESUMO

The decomposition rate of H(2)O(2) by iron(III)-nitrilotriacetate complexes (Fe(III)NTA) has been investigated over a large range of experimental conditions: 3 < pH < 11, [Fe(III)](T,0): 0.05-1 mM; [NTA](T,0)/[Fe(III)](T,0) molar ratios : 1-250; [H(2)O(2)](0): 1 mM-4 M) and concentrations of HO· radical scavengers: 0-53 mM. Spectrophotometric analyses revealed that reactions of H(2)O(2) with Fe(III)NTA (1 mM) at neutral pH immediately lead to the formation of intermediates (presumably peroxocomplexes of Fe(III)NTA) which absorb light in the region 350-600 nm where Fe(III)NTA and H(2)O(2) do not absorb. Kinetic experiments showed that the decomposition rates of H(2)O(2) were first-order with respect to H(2)O(2) and that the apparent first-order rate constants were found to be proportional to the total concentration of Fe(III)NTA complexes, were at a maximum at pH 7.95 ± 0.10 and depend on the [NTA](T,0)/[Fe(III)](T,0) and [H(2)O(2)](0)/[Fe(III)](T,0) molar ratios. The addition of increasing concentrations of tert-butanol or sodium bicarbonate significantly decreased the decomposition rate of H(2)O(2), suggesting the involvement of HO· radicals in the decomposition of H(2)O(2). The decomposition of H(2)O(2) by Fe(III)NTA at neutral pH was accompanied by a production of dioxygen and by the oxidation of NTA. The degradation of the organic ligand during the course of the reaction led to a progressive decomplexation of Fe(III)NTA followed by a subsequent precipitation of iron(III) oxyhydroxides and by a significant decrease in the catalytic activity of Fe(III) species for the decomposition of H(2)O(2).


Assuntos
Peróxido de Hidrogênio/química , Ferro/química , Ácido Nitrilotriacético/química , Água/química , Catálise , Cloretos/química , Sequestradores de Radicais Livres/química , Concentração de Íons de Hidrogênio , Radical Hidroxila/química , Íons , Cinética , Ligantes , Modelos Químicos , Oxigênio/química , Fosfatos/química , Solubilidade , Espectrofotometria , Sulfatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA