Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(32): 28129-28137, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35990439

RESUMO

This article reports a scalable process development for the production of alkyl esters through the esterification route by utilizing fly ash as a catalyst. The catalyst consisting of mixed oxides such as alumina, iron oxide, calcium oxide, magnesium oxide, and silica was employed for the esterification reaction without modification. The catalyst was evaluated for the conversion of feedstock containing variable amounts of free fatty acids, mono/dibasic acid, and alcohol/polyols into the corresponding alkyl esters. Three types of fly ash catalysts, viz., FS-1, FP-1, and FC-1, were chosen from three different industrial sources. Synthesis of dimethyl adipate was studied as a model reaction. FS-1 fly ash gave the highest yield of dimethyl adipate, whereas FC-1 gave a low yield of dimethyl adipate. The recyclability of FS-1 was evaluated for three cycles, and no loss of yield was observed. Furthermore, the catalyst FS-I was found to be capable of producing good yields for various esterification reactions with different substrates.

2.
J Nanosci Nanotechnol ; 18(1): 323-327, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29768848

RESUMO

The present study is focussed on development of highly dispersed nanosize iron oxide (FexOy) particles within the uniform mesopore channels of SBA-3. Herein we report a comparative study between conventional incipient wetness and microwave assisted synthesis routes adopted to devise nanoparticles. The developed materials are characterised by following X-ray diffraction, high resolution transmission electron microscopy, proton induced X-ray emission, diffuse reflectance UV-visible spectroscopy, thermogravimetry and Fourier transform infrared spectroscopy. Mesoporous siliceous SBA-3 was prepared at room temperature to obtain samples with good crystallinity and ordered pore structure. Pore channels of SBA-3 were used as nanoreactor for developing iron oxide nanoparticles. Iron oxide nanoparticles developed under microwave activation showed uniform distribution within the SBA-3 structure along with retaining the orderness of the pore architecture. On the contrary, iron oxides developed under incipient wetness method followed by conventional heating resulted in agglomeration of nanoparticles along with significant loss in SBA-3 pore structure. Proton induced X-ray emission studies revealed the extremely high purity of the samples and almost thrice higher amount of iron oxide particles are encapsulated within the host by microwave assisted preparation as compared to incipient/conventional heating method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...