Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 7(7): 3190-3200, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34152745

RESUMO

As the most representative family of proteinases related to tumorigenesis, matrix metalloproteinase-9 (MMP-9) represents a key player in cancer cell migration and regulation of the tumor microenvironment. The inhibition of MMP-9 activity has been pursued as a target for anticancer therapy. However, most synthetic MMP-9 inhibitors have failed in clinical trials because of their lack of selectivity. Here, an abiotic mimic based on molecularly imprinted nanoparticles has been designed as an inhibitor for MMP-9. To attain fast mass transfer and facilitate multifunctional roles, we synthesized the imprinted polymer thin layer on the surface of gold nanorods by reversible addition-fragmentation chain transfer polymerization using MMP-9 as the template, which captures MMP-9 selectively and inhibits its activity by providing steric hindrance to the activity-related domain of MMP-9. In vitro cell experiments and in vivo studies in mice demonstrate that the imprinted artificial antibody suppresses the migration and growth of metastatic tumors. The tumor growth inhibition rate reaches up to 54 ± 15%. Compared with the typical photothermal therapy induced by gold nanorods, the use of MMP-9-imprinted synthetic antibody could better inhibit the lung tumor metastasis by quenching the enzyme activity of MMP-9. This study offers a new paradigm in the engineering of imprinted nanoparticles as inhibitors for cancer therapy.


Assuntos
Neoplasias Pulmonares , Inibidores de Metaloproteinases de Matriz , Animais , Movimento Celular , Neoplasias Pulmonares/tratamento farmacológico , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Inibidores de Metaloproteinases de Matriz/farmacologia , Camundongos , Microambiente Tumoral
2.
Biotechnol Adv ; 45: 107640, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33031907

RESUMO

Molecularly imprinted polymers (MIPs) emerged half a century ago have now attracted tremendous attention as artificial receptors or plastic antibodies. Although the preparation of MIPs targeting small molecules, peptides, or even proteins is straightforward and well-developed, the molecular imprinting of microorganisms still remains a big challenge. This review highlights the preparation of MIPs that reveal biomimetic specificity and selectivity towards microorganisms by creating the well-defined cell recognition sites. We present the state-of-the-art strategies for the expeditious synthesis of MIPs targeting microorganism including surface components imprinting, cell mediated lithography, and microcontact stamping. These receptor-like biomimetic materials have garnered increasing attention in different fields. In this review, we also describe the diverse applications of microorganism-imprinted polymers such as microbial activation, microbial fuel cells, and microorganism detection and sensing. The major challenges and further prospects on the design of microorganism-imprinted polymers is also outlined.


Assuntos
Materiais Biomiméticos , Impressão Molecular , Polímeros Molecularmente Impressos , Polímeros , Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...