Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prog Biomater ; 9(1-2): 45-64, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32474882

RESUMO

Wound is among the most common injuries. A suitable wound dressing has a significant effect on the healing process. In this study, a porous wound dressing was prepared using poly (lactic acid) (PLA) and two plasticizers, polyethylene glycol (PEG) and triacetin (TA), through solvent casting method. For antibacterial activities, metronidazole was incorporated in the structure. The morphology was investigated by scanning electron microscopy (SEM). In addition, the effect of plasticizers ratio on porosity growth was evaluated. It was also observed that each had a unique effect on the structure's porosity. The mechanical properties confirmed the effect of both plasticizers on increasing polymer softness and flexibility, and the most similar formulations to human skin in terms of mechanical properties were introduced. According to the results, TA had stronger effect on mechanical properties. The differential scanning calorimetry (DSC) showed the effect of increasing plasticizer concentration on crystalline structure and Tm reduction of PLA. The water contact angle measurement showed that both plasticizers enhanced hydrophilic characteristics of PLA, and this effect was weaker in PEG-containing formulations. The in vitro degradation study showed biodegradability, as a desirable property in wound dressing. Results suggested that higher degradation can be obtained by both plasticizers at the same time. The results also showed that PEG was more effective in enhancing water absorbency. In vitro drug release study indicated an explosive release and the highest amount was 85% over 186 h. The antibacterial activity test confirmed the effectiveness of the drug in preventing bacterial growth in the drug-containing formulations, while it showed the antibacterial property of TA. MTT assay was performed and the cellular toxicity of the formulations was checked and those that revealed the least toxicity were introduced.

2.
Sci Rep ; 10(1): 6129, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32273549

RESUMO

To eliminate the microbial infection from an injury site, various modalities have been developed such as dressings and human skin substitutes. However, the high amount of reactive oxygen species, microbial infection, and damaging extracellular matrix remain as the main challenges for the wound healing process. In this study, for the first time, green synthesized silver nanoparticles (AgNPs) using Teucrium polium extract were embedded in poly lactic acid/poly ethylene glycol (PLA/PEG) film to provide absorbable wound dressing, with antioxidant and antibacterial features. The physicochemical analysis demonstrated, production of AgNPs with size approximately 32.2 nm and confirmed the presence of phytoconstituents on their surface. The antibacterial assessments exhibited a concentration-dependent sensitivity of Staphylococcus aureus and Pseudomonas aeruginosa toward biosynthesized AgNPs, which showed a suitable safety profile in human macrophage cells. Furthermore, oxidant scavenging assays demonstrated exploitation of plant extract as a reducing agent, endows antioxidant activity to biogenic AgNPs. The formation of PLA/PEG nanofilm and entrapment of AgNPs into their matrix were clearly confirmed by scanning electron microscopy. More importantly, antibacterial examination demonstrated that the introduction of biogenic AgNPs into PLA/PEG nanofibers led to complete growth inhibition of P. aeruginosa and S. aureus. In summary, the simultaneous antioxidant activity and antimicrobial activity of the novel biogenic AgNPs/PLA/PEG nanofilm showed its potential for application as wound dressing.


Assuntos
Antibacterianos/síntese química , Antioxidantes/síntese química , Nanopartículas Metálicas/química , Cicatrização , Antibacterianos/efeitos adversos , Antibacterianos/farmacologia , Antioxidantes/efeitos adversos , Antioxidantes/farmacologia , Humanos , Lactatos/química , Macrófagos/efeitos dos fármacos , Polietilenoglicóis/química , Pseudomonas aeruginosa/efeitos dos fármacos , Prata/química , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...