Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Cent Sci ; 7(8): 1317-1326, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34611547

RESUMO

The discovery of conductive and magnetic two-dimensional (2D) materials is critical for the development of next generation spintronics devices. Coordination chemistry in particular represents a highly versatile, though underutilized, route toward the synthesis of such materials with designer lattices. Here, we report the synthesis of a conductive, layered 2D metal-organic kagome lattice, Mn3(C6S6), using mild solution-phase chemistry. Strong geometric spin frustration in this system mediates spin freezing at low temperatures, which results in glassy magnetic dynamics consistent with a rare geometrically frustrated (topological) spin glass. Notably, we show that this geometric frustration engenders a large, tunable exchange bias of 1625 Oe in Mn3(C6S6), providing the first example of exchange bias in a coordination solid or a topological spin glass. Exchange bias is a critical component in a number of spintronics applications, but it is difficult to rationally tune, as it typically arises due to structural disorder. This work outlines a new strategy for engineering exchange bias systems using single-phase, crystalline lattices. More generally, these results demonstrate the potential utility of geometric frustration in the design of new nanoscale spintronic materials.

2.
J Am Chem Soc ; 143(22): 8465-8475, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34029482

RESUMO

We report the synthesis and characterization of the trinuclear 4d-4f compounds [Co(C5Me5)2][(C5Me5)2Ln(µ-S)2Mo(µ-S)2Ln(C5Me5)2], 1-Ln (Ln = Y, Gd, Tb, Dy), containing the highly polarizable MoS43- bridging unit. UV-Vis-NIR diffuse reflectance spectra and DFT calculations of 1-Ln reveal a low-energy metal-to-metal charge transfer transition assigned to charge transfer from the singly occupied 4dz2 orbital of MoV to the empty 5d orbitals of the lanthanides (4d in the case of 1-Y), mediated by sulfur-based 3p orbitals. Electron paramagnetic resonance spectra collected for 1-Y in a tetrahydrofuran solution show large 89Y hyperfine coupling constants of A⊥ = 23 MHz and A|| = 26 MHz, indicating the presence of significant yttrium-localized unpaired electron density. Magnetic susceptibility data support similar electron delocalization and ferromagnetic Ln-Mo exchange for 1-Gd, 1-Tb, and 1-Dy. This ferromagnetic exchange gives rise to an S = 15/2 ground state for 1-Gd and one of the largest magnetic exchange constants involving GdIII observed to date, with JGd-Mo = +16.1(2) cm-1. Additional characterization of 1-Tb and 1-Dy by ac magnetic susceptibility measurements reveals that both compounds exhibit slow magnetic relaxation. Although a Raman magnetic relaxation process is dominant for both 1-Tb and 1-Dy, an extracted thermal relaxation barrier of Ueff = 68 cm-1 for 1-Dy is the largest yet reported for a complex containing a paramagnetic 4d metal center. Together, these results provide a potentially generalizable route to enhanced nd-4f magnetic exchange, revealing opportunities for the design of new nd-4f single-molecule magnets and bulk magnetic materials.

3.
Nat Chem ; 13(6): 594-598, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33859391

RESUMO

Materials that combine magnetic order with other desirable physical attributes could find transformative applications in spintronics, quantum sensing, low-density magnets and gas separations. Among potential multifunctional magnetic materials, metal-organic frameworks, in particular, bear structures that offer intrinsic porosity, vast chemical and structural programmability, and the tunability of electronic properties. Nevertheless, magnetic order within metal-organic frameworks has generally been limited to low temperatures, owing largely to challenges in creating a strong magnetic exchange. Here we employ the phenomenon of itinerant ferromagnetism to realize magnetic ordering at TC = 225 K in a mixed-valence chromium(II/III) triazolate compound, which represents the highest ferromagnetic ordering temperature yet observed in a metal-organic framework. The itinerant ferromagnetism proceeds through a double-exchange mechanism, which results in a barrierless charge transport below the Curie temperature and a large negative magnetoresistance of 23% at 5 K. These observations suggest applications for double-exchange-based coordination solids in the emergent fields of magnetoelectrics and spintronics.

4.
J Am Chem Soc ; 142(50): 21197-21209, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33322909

RESUMO

Systematic analysis of related compounds is crucial to the design of single-molecule magnets with improved properties, yet such studies on multinuclear lanthanide complexes with strong magnetic coupling remain rare. Herein, we present the synthesis and magnetic characterization of the series of radical-bridged dilanthanide complex salts [(Cp*2Ln)2(µ-5,5'-R2bpym)](BPh4) (Ln = Gd, Dy; R = NMe2 (1), OEt (2), Me (3), F (4); bpym = 2,2'-bipyrimidine). Modification of the substituent on the bridging 5,5'-R2bpym radical anion allows the magnetic exchange coupling constant, JGd-rad, for the gadolinium compounds in this series to be tuned over a range from -2.7 cm-1 (1) to -11.1 cm-1 (4), with electron-withdrawing or -donating substituents increasing or decreasing the strength of exchange coupling, respectively. Modulation of the exchange coupling interaction has a significant impact on the magnetic relaxation dynamics of the single-molecule magnets 1-Dy through 4-Dy, where stronger JGd-rad for the corresponding Gd3+ compounds is associated with larger thermal barriers to magnetic relaxation (Ueff), open magnetic hysteresis at higher temperatures, and slower magnetic relaxation rates for through-barrier processes. Further, we derive an empirical linear correlation between the experimental Ueff values for 1-Dy through 4-Dy and the magnitude of JGd-rad for the corresponding gadolinium derivatives that provides insight into the electronic structure of these complexes. This simple model applies to other organic radical-bridged dysprosium complexes in the literature, and it establishes clear design criteria for increasing magnetic operating temperatures in radical-bridged molecules.

5.
Nat Commun ; 11(1): 3087, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32555184

RESUMO

The design of stable adsorbents capable of selectively capturing dioxygen with a high reversible capacity is a crucial goal in functional materials development. Drawing inspiration from biological O2 carriers, we demonstrate that coupling metal-based electron transfer with secondary coordination sphere effects in the metal-organic framework Co2(OH)2(bbta) (H2bbta = 1H,5H-benzo(1,2-d:4,5-d')bistriazole) leads to strong and reversible adsorption of O2. In particular, moderate-strength hydrogen bonding stabilizes a cobalt(III)-superoxo species formed upon O2 adsorption. Notably, O2-binding in this material weakens as a function of loading, as a result of negative cooperativity arising from electronic effects within the extended framework lattice. This unprecedented behavior extends the tunable properties that can be used to design metal-organic frameworks for adsorption-based applications.

6.
Nature ; 577(7788): 64-68, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31739311

RESUMO

The size-dependent and shape-dependent characteristics that distinguish nanoscale materials from bulk solids arise from constraining the dimensionality of an inorganic structure1-3. As a consequence, many studies have focused on rationally shaping these materials to influence and enhance their optical, electronic, magnetic and catalytic properties4-6. Although a select number of stable clusters can typically be synthesized within the nanoscale regime for a specific composition, isolating clusters of a predetermined size and shape remains a challenge, especially for those derived from two-dimensional materials. Here we realize a multidentate coordination environment in a metal-organic framework to stabilize discrete inorganic clusters within a porous crystalline support. We show confined growth of atomically defined nickel(II) bromide, nickel(II) chloride, cobalt(II) chloride and iron(II) chloride sheets through the peripheral coordination of six chelating bipyridine linkers. Notably, confinement within the framework defines the structure and composition of these sheets and facilitates their precise characterization by crystallography. Each metal(II) halide sheet represents a fragment excised from a single layer of the bulk solid structure, and structures obtained at different precursor loadings enable observation of successive stages of sheet assembly. Finally, the isolated sheets exhibit magnetic behaviours distinct from those of the bulk metal halides, including the isolation of ferromagnetically coupled large-spin ground states through the elimination of long-range, interlayer magnetic ordering. Overall, these results demonstrate that the pore environment of a metal-organic framework can be designed to afford precise control over the size, structure and spatial arrangement of inorganic clusters.

7.
J Am Chem Soc ; 140(29): 9030-9033, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30001620

RESUMO

Cobalt(II), in the presence of acetate and nitrate, quantitatively adds to the manganese-cobalt oxido cubane MnIVCoIII3O4(OAc)5(py)3 (1) to furnish the pentametallic dangler complex MnIVCoIII3CoIIO4(OAc)6(NO3)(py)3 (2). Complex 2 is structurally reminiscent of photosystem II's oxygen-evolving center, and is a rare example of a transition-metal "dangler" complex. Superconducting quantum interference device magnetometry and density functional theory calculations characterize 2 as having an S = 0 ground state arising from antiferromagnetic coupling between the CoII and MnIV ions. At higher temperatures, an uncoupled state dominates. The voltammogram of 2 has four electrochemical events, two more than that of its parent cubane 1, suggesting that addition of the dangler increases available redox states. Structural, electrochemical, and magnetic comparisons of complexes 1 and 2 allow a better understanding of the dangler's influence on a cubane.

8.
Nat Mater ; 17(7): 625-632, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29867169

RESUMO

Conductive metal-organic frameworks are an emerging class of three-dimensional architectures with degrees of modularity, synthetic flexibility and structural predictability that are unprecedented in other porous materials. However, engendering long-range charge delocalization and establishing synthetic strategies that are broadly applicable to the diverse range of structures encountered for this class of materials remain challenging. Here, we report the synthesis of K x Fe2(BDP)3 (0 ≤ x ≤ 2; BDP2- = 1,4-benzenedipyrazolate), which exhibits full charge delocalization within the parent framework and charge mobilities comparable to technologically relevant polymers and ceramics. Through a battery of spectroscopic methods, computational techniques and single-microcrystal field-effect transistor measurements, we demonstrate that fractional reduction of Fe2(BDP)3 results in a metal-organic framework that displays a nearly 10,000-fold enhancement in conductivity along a single crystallographic axis. The attainment of such properties in a K x Fe2(BDP)3 field-effect transistor represents the realization of a general synthetic strategy for the creation of new porous conductor-based devices.

9.
J Am Chem Soc ; 140(27): 8526-8534, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29893567

RESUMO

Metal-organic frameworks are of interest for use in a variety of electrochemical and electronic applications, although a detailed understanding of their charge transport behavior, which is of critical importance for enhancing electronic conductivities, remains limited. Herein, we report isolation of the mixed-valence framework materials, Fe(tri)2(BF4) x (tri- = 1,2,3-triazolate; x = 0.09, 0.22, and 0.33), obtained from the stoichiometric chemical oxidation of the poorly conductive iron(II) framework Fe(tri)2, and find that the conductivity increases dramatically with iron oxidation level. Notably, the most oxidized variant, Fe(tri)2(BF4)0.33, displays a room-temperature conductivity of 0.3(1) S/cm, which represents an increase of 8 orders of magnitude from that of the parent material and is one of the highest conductivity values reported among three-dimensional metal-organic frameworks. Detailed characterization of Fe(tri)2 and the Fe(tri)2(BF4) x materials via powder X-ray diffraction, Mössbauer spectroscopy, and IR and UV-vis-NIR diffuse reflectance spectroscopies reveals that the high conductivity arises from intervalence charge transfer between mixed-valence low-spin FeII/III centers. Further, Mössbauer spectroscopy indicates the presence of a valence-delocalized FeII/III species in Fe(tri)2(BF4) x at 290 K, one of the first such observations for a metal-organic framework. The electronic structure of valence-pure Fe(tri)2 and the charge transport mechanism and electronic structure of mixed-valence Fe(tri)2(BF4) x frameworks are discussed in detail.

10.
Chemistry ; 24(30): 7702-7709, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29490123

RESUMO

A new series of Ln2+ complexes has been synthesized that overturns two previous generalizations in rare-earth metal reduction chemistry: that amide ligands do not form isolable complexes of the highly reducing non-traditional Ln2+ ions, and that yttrium is a good model for the late lanthanides in these reductive reactions. Reduction of Ln(NR2 )3 (R=SiMe3 ) complexes in THF under Ar with M=K or Rb in the presence of 2.2.2-cryptand (crypt) forms crystallographically characterizable [M(crypt)][Ln(NR2 )3 ] complexes not only for the traditional Tm2+ ion and the configurational crossover ions, Nd2+ and Dy2+ , but also for the non-traditional Gd2+ , Tb2+ , Ho2+ , and Er2+ ions. Crystallographic data as well as UV/Vis, magnetic susceptibility, and density functional theory studies are consistent with the accessibility of 4fn 5d1 configurations for Ln2+ ions in this tris(silylamide) ligand environment. The Dy2+ complex, [K(crypt)][Dy(NR2 )3 ], has a higher magnetic moment than previously observed for any monometallic complex: 11.67 µB .

11.
J Am Chem Soc ; 140(8): 3040-3051, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29400059

RESUMO

The isostructural, two-dimensional metal-organic frameworks (H2NMe2)2M2(Cl2dhbq)3 (M = Ti, V; Cl2dhbqn- = deprotonated 2,5-dichloro-3,6-dihydroxybenzoquinone) and (H2NMe2)1.5Cr2(dhbq)3 (dhbqn- = deprotonated 2,5-dihydroxybenzoquinone) are synthesized and investigated by spectroscopic, magnetic, and electrochemical methods. The three frameworks exhibit substantial differences in their electronic structures, and the bulk electronic conductivities of these phases correlate with the extent of delocalization observed via UV-vis-NIR and IR spectroscopies. Notably, substantial metal-ligand covalency in the vanadium phase results in the quenching of ligand-based spins, the observation of simultaneous metal- and ligand-based redox processes, and a high electronic conductivity of 0.45 S/cm. A molecular orbital analysis of these materials and a previously reported iron congener suggests that the differences in conductivity can be explained by correlating the metal-ligand energy alignment with the energy of intervalence charge-transfer transitions, which should determine the barrier to charge hopping in the mixed-valence frameworks.

12.
Inorg Chem ; 57(4): 2096-2102, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29393645

RESUMO

The utility of lithium compared to other alkali metals in generating Ln2+ rare-earth metal complexes via reduction of Ln3+ precursors in reactions abbreviated as LnA3/M (Ln = rare-earth metal; A = anionic ligand; M = alkali metal) is described. Lithium reduction of Cp'3Ln (Cp' = C5H4SiMe3; Ln = Y, Tb, Dy, Ho) under Ar in the presence of 2.2.2-cryptand (crypt) forms new examples of crystallographically characterizable Ln2+ complexes of these metals, [Li(crypt)][Cp'3Ln]. In each complex, lithium is found in an N2O4 donor atom coordination geometry that is unusual for the cryptand ligand. Magnetic susceptibility data on these new examples of nontraditional divalent lanthanide complexes are consistent with 4fn5d1 electronic configurations. The Dy and Ho complexes have exceptionally high single-ion magnetic moments, 11.35 and 11.67 µB, respectively. Lithium reduction of Cp'3Y under N2 at -35 °C forms the Y2+ complex (Cp'3Y)1-, which reduces dinitrogen upon warming to room temperature to generate the (N2)2- complex [Cp'2Y(THF)]2(µ-η2:η2-N2). These results provide insight on the factors that lead to reduced dinitrogen complexes and/or stable divalent lanthanide complexes as a function of the specific reducing agent and conditions.

13.
Angew Chem Int Ed Engl ; 57(7): 1933-1938, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29285845

RESUMO

The first dysprosium complexes with a terminal fluoride ligand are obtained as air-stable compounds. The strong, highly electrostatic dysprosium-fluoride bond generates a large axial crystal-field splitting of the J=15/2 ground state, as evidenced by high-resolution luminescence spectroscopy and correlated with the single-molecule magnet behavior through experimental magnetic susceptibility data and ab initio calculations.

14.
Nat Commun ; 8(1): 2144, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29247236

RESUMO

Increasing the operating temperatures of single-molecule magnets-molecules that can retain magnetic polarization in the absence of an applied field-has potential implications toward information storage and computing, and may also inform the development of new bulk magnets. Progress toward these goals relies upon the development of synthetic chemistry enabling enhancement of the thermal barrier to reversal of the magnetic moment, while suppressing alternative relaxation processes. Herein, we show that pairing the axial magnetic anisotropy enforced by tetramethylcyclopentadienyl (CpMe4H) capping ligands with strong magnetic exchange coupling provided by an N23- radical bridging ligand results in a series of dilanthanide complexes exhibiting exceptionally large magnetic hysteresis loops that persist to high temperatures. Significantly, reducing the coordination number of the metal centers appears to increase axial magnetic anisotropy, giving rise to larger magnetic relaxation barriers and 100-s magnetic blocking temperatures of up to 20 K, as observed for the complex [K(crypt-222)][(CpMe4H2Tb)2(µ-[Formula: see text])].


Assuntos
Radicais Livres/química , Temperatura Alta , Elementos da Série dos Lantanídeos/química , Fenômenos Magnéticos , Compostos Organometálicos/química , Algoritmos , Anisotropia , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Estrutura Molecular , Termodinâmica
15.
Nature ; 550(7674): 96-100, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28892810

RESUMO

Cooperative binding, whereby an initial binding event facilitates the uptake of additional substrate molecules, is common in biological systems such as haemoglobin. It was recently shown that porous solids that exhibit cooperative binding have substantial energetic benefits over traditional adsorbents, but few guidelines currently exist for the design of such materials. In principle, metal-organic frameworks that contain coordinatively unsaturated metal centres could act as both selective and cooperative adsorbents if guest binding at one site were to trigger an electronic transformation that subsequently altered the binding properties at neighbouring metal sites. Here we illustrate this concept through the selective adsorption of carbon monoxide (CO) in a series of metal-organic frameworks featuring coordinatively unsaturated iron(ii) sites. Functioning via a mechanism by which neighbouring iron(ii) sites undergo a spin-state transition above a threshold CO pressure, these materials exhibit large CO separation capacities with only small changes in temperature. The very low regeneration energies that result may enable more efficient Fischer-Tropsch conversions and extraction of CO from industrial waste feeds, which currently underutilize this versatile carbon synthon. The electronic basis for the cooperative adsorption demonstrated here could provide a general strategy for designing efficient and selective adsorbents suitable for various separations.

16.
J Am Chem Soc ; 139(15): 5579-5587, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28347135

RESUMO

Incorporation of Mn into an established water oxidation catalyst based on a Co(III)4O4 cubane was achieved by a simple and efficient assembly of permanganate, cobalt(II) acetate, and pyridine to form the cubane oxo cluster MnCo3O4(OAc)5py3 (OAc = acetate, py = pyridine) (1-OAc) in good yield. This allows characterization of electronic and chemical properties for a manganese center in a cobalt oxide environment, and provides a molecular model for Mn-doped cobalt oxides. The electronic properties of the cubane are readily tuned by exchange of the OAc- ligand for Cl- (1-Cl), NO3- (1-NO3), and pyridine ([1-py]+). EPR spectroscopy, SQUID magnetometry, and DFT calculations thoroughly characterized the valence assignment of the cubane as [MnIVCoIII3]. These cubanes are redox-active, and calculations reveal that the Co ions behave as the reservoir for electrons, but their redox potentials are tuned by the choice of ligand at Mn. This MnCo3O4 cubane system represents a new class of easily prepared, versatile, and redox-active oxido clusters that should contribute to an understanding of mixed-metal, Mn-containing oxides.


Assuntos
Cobalto/química , Manganês/química , Compostos Organometálicos/química , Óxidos/química , Água/química , Catálise , Oxirredução , Teoria Quântica
17.
Angew Chem Int Ed Engl ; 56(34): 10103-10107, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28157259

RESUMO

Assembly of the triangular, organic radical-bridged complexes Cp*6 Ln3 (µ3 -HAN) (Cp*=pentamethylcyclopentadienyl; Ln=Gd, Tb, Dy; HAN=hexaazatrinaphthylene) proceeds through the reaction of Cp*2 Ln(BPh4 ) with HAN under strongly reducing conditions. Significantly, magnetic susceptibility measurements of these complexes support effective magnetic coupling of all three LnIII centers through the HAN3-. radical ligand. Thorough investigation of the DyIII congener through both ac susceptibility and dc magnetic relaxation measurements reveals slow relaxation of the magnetization, with an effective thermal relaxation barrier of Ueff =51 cm-1 . Magnetic coupling in the DyIII complex enables a large remnant magnetization at temperatures up to 3.0 K in the magnetic hysteresis measurements and hysteresis loops that are open at zero-field up to 3.5 K.

18.
Inorg Chem ; 55(10): 4924-34, 2016 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-27136308

RESUMO

We report electronic, vibrational, and magnetic properties, together with their structural dependences, for the metal-organic framework Fe2(dobdc) (dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate) and its derivatives, Fe2(O)2(dobdc) and Fe2(OH)2(dobdc)-species arising in the previously proposed mechanism for the oxidation of ethane to ethanol using N2O as an oxidant. Magnetic susceptibility measurements reported for Fe2(dobdc) in an earlier study and reported in the current study for Fe(II)0.26[Fe(III)(OH)]1.74(dobdc)(DMF)0.15(THF)0.22, which is more simply referred to as Fe2(OH)2(dobdc), were used to confirm the computational results. Theory was also compared to experiment for infrared spectra and powder X-ray diffraction structures. Structural and magnetic properties were computed by using Kohn-Sham density functional theory both with periodic boundary conditions and with cluster models. In addition, we studied the effects of different treatments of the exchange interactions on the magnetic coupling parameters by comparing several approaches to the exchange-correlation functional: generalized gradient approximation (GGA), GGA with empirical Coulomb and exchange integrals for 3d electrons (GGA+U), nonseparable gradient approximation (NGA) with empirical Coulomb and exchange integrals for 3d electrons (NGA+U), hybrid GGA, meta-GGA, and hybrid meta-GGA. We found the coupling between the metal centers along a chain to be ferromagnetic in the case of Fe2(dobdc) and antiferromagnetic in the cases of Fe2(O)2(dobdc) and Fe2(OH)2(dobdc). The shift in magnetic coupling behavior correlates with the changing electronic structure of the framework, which derives from both structural and electronic changes that occur upon metal oxidation and addition of the charge-balancing oxo and hydroxo ligands.

19.
J Am Chem Soc ; 138(22): 7161-70, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27180991

RESUMO

The air-free reaction of CoCl2 with 1,3,5-tri(1H-1,2,3-triazol-5-yl)benzene (H3BTTri) in N,N-dimethylformamide (DMF) and methanol leads to the formation of Co-BTTri (Co3[(Co4Cl)3(BTTri)8]2·DMF), a sodalite-type metal-organic framework. Desolvation of this material generates coordinatively unsaturated low-spin cobalt(II) centers that exhibit a strong preference for binding O2 over N2, with isosteric heats of adsorption (Qst) of -34(1) and -12(1) kJ/mol, respectively. The low-spin (S = 1/2) electronic configuration of the metal centers in the desolvated framework is supported by structural, magnetic susceptibility, and computational studies. A single-crystal X-ray structure determination reveals that O2 binds end-on to each framework cobalt center in a 1:1 ratio with a Co-O2 bond distance of 1.973(6) Å. Replacement of one of the triazolate linkers with a more electron-donating pyrazolate group leads to the isostructural framework Co-BDTriP (Co3[(Co4Cl)3(BDTriP)8]2·DMF; H3BDTriP = 5,5'-(5-(1H-pyrazol-4-yl)-1,3-phenylene)bis(1H-1,2,3-triazole)), which demonstrates markedly higher yet still fully reversible O2 affinities (Qst = -47(1) kJ/mol at low loadings). Electronic structure calculations suggest that the O2 adducts in Co-BTTri are best described as cobalt(II)-dioxygen species with partial electron transfer, while the stronger binding sites in Co-BDTriP form cobalt(III)-superoxo moieties. The stability, selectivity, and high O2 adsorption capacity of these materials render them promising new adsorbents for air separation processes.


Assuntos
Cobalto/química , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Oxigênio/química , Pirazóis/química , Triazóis/química , Cristalografia por Raios X , Modelos Moleculares
20.
J Am Chem Soc ; 138(17): 5594-602, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27097297

RESUMO

A new metal-organic framework, Fe-BTTri (Fe3[(Fe4Cl)3(BTTri)8]2·18CH3OH, H3BTTri =1,3,5-tris(1H-1,2,3-triazol-5-yl)benzene)), is found to be highly selective in the adsorption of CO over a variety of other gas molecules, making it extremely effective, for example, in the removal of trace CO from mixtures with H2, N2, and CH4. This framework not only displays significant CO adsorption capacity at very low pressures (1.45 mmol/g at just 100 µbar), but, importantly, also exhibits readily reversible CO binding. Fe-BTTri utilizes a unique spin state change mechanism to bind CO in which the coordinatively unsaturated, high-spin Fe(II) centers of the framework convert to octahedral, low-spin Fe(II) centers upon CO coordination. Desorption of CO converts the Fe(II) sites back to a high-spin ground state, enabling the facile regeneration and recyclability of the material. This spin state change is supported by characterization via infrared spectroscopy, single crystal X-ray analysis, Mössbauer spectroscopy, and magnetic susceptibility measurements. Importantly, the spin state change is selective for CO and is not observed in the presence of other gases, such as H2, N2, CO2, CH4, or other hydrocarbons, resulting in unprecedentedly high selectivities for CO adsorption for use in CO/H2, CO/N2, and CO/CH4 separations and in preferential CO adsorption over typical strongly adsorbing gases like CO2 and ethylene. While adsorbate-induced spin state transitions are well-known in molecular chemistry, particularly for CO, to our knowledge this is the first time such behavior has been observed in a porous material suitable for use in a gas separation process. Potentially, this effect can be extended to selective separations involving other π-acids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...