Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 146(12): 5070-5085, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37635302

RESUMO

RNA polymerase III (Pol III)-related hypomyelinating leukodystrophy (POLR3-HLD), also known as 4H leukodystrophy, is a severe neurodegenerative disease characterized by the cardinal features of hypomyelination, hypodontia and hypogonadotropic hypogonadism. POLR3-HLD is caused by biallelic pathogenic variants in genes encoding Pol III subunits. While approximately half of all patients carry mutations in POLR3B encoding the RNA polymerase III subunit B, there is no in vivo model of leukodystrophy based on mutation of this Pol III subunit. Here, we determined the impact of POLR3BΔ10 (Δ10) on Pol III in human cells and developed and characterized an inducible/conditional mouse model of leukodystrophy using the orthologous Δ10 mutation in mice. The molecular mechanism of Pol III dysfunction was determined in human cells by affinity purification-mass spectrometry and western blot. Postnatal induction with tamoxifen induced expression of the orthologous Δ10 hypomorph in triple transgenic Pdgfrα-Cre/ERT; R26-Stopfl-EYFP; Polr3bfl mice. CNS and non-CNS features were characterized using a variety of techniques including microCT, ex vivo MRI, immunofluorescence, immunohistochemistry, spectral confocal reflectance microscopy and western blot. Lineage tracing and time series analysis of oligodendrocyte subpopulation dynamics based on co-labelling with lineage-specific and/or proliferation markers were performed. Proteomics suggested that Δ10 causes a Pol III assembly defect, while western blots demonstrated reduced POLR3BΔ10 expression in the cytoplasm and nucleus in human cells. In mice, postnatal Pdgfrα-dependent expression of the orthologous murine mutant protein resulted in recessive phenotypes including severe hypomyelination leading to ataxia, tremor, seizures and limited survival, as well as hypodontia and craniofacial abnormalities. Hypomyelination was confirmed and characterized using classic methods to quantify myelin components such as myelin basic protein and lipids, results which agreed with those produced using modern methods to quantify myelin based on the physical properties of myelin membranes. Lineage tracing uncovered the underlying mechanism for the hypomyelinating phenotype: defective oligodendrocyte precursor proliferation and differentiation resulted in a failure to produce an adequate number of mature oligodendrocytes during postnatal myelinogenesis. In summary, we characterized the Polr3bΔ10 mutation and developed an animal model that recapitulates features of POLR3-HLD caused by POLR3B mutations, shedding light on disease pathogenesis, and opening the door to the development of therapeutic interventions.


Assuntos
Anodontia , Anormalidades Craniofaciais , Doenças Desmielinizantes , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Doenças Neurodegenerativas , Humanos , Animais , Camundongos , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Mutação/genética
2.
Genet Med ; 23(12): 2352-2359, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34446925

RESUMO

PURPOSE: Recent reports of individuals with cytoplasmic transfer RNA (tRNA) synthetase-related disorders have identified cases with phenotypic variability from the index presentations. We sought to assess phenotypic variability in individuals with AARS1-related disease. METHODS: A cross-sectional survey was performed on individuals with biallelic variants in AARS1. Clinical data, neuroimaging, and genetic testing results were reviewed. Alanyl tRNA synthetase (AlaRS) activity was measured in available fibroblasts. RESULTS: We identified 11 affected individuals. Two phenotypic presentations emerged, one with early infantile-onset disease resembling the index cases of AARS1-related epileptic encephalopathy with deficient myelination (n = 7). The second (n = 4) was a later-onset disorder, where disease onset occurred after the first year of life and was characterized on neuroimaging by a progressive posterior predominant leukoencephalopathy evolving to include the frontal white matter. AlaRS activity was significantly reduced in five affected individuals with both early infantile-onset and late-onset phenotypes. CONCLUSION: We suggest that variants in AARS1 result in a broader clinical spectrum than previously appreciated. The predominant form results in early infantile-onset disease with epileptic encephalopathy and deficient myelination. However, a subgroup of affected individuals manifests with late-onset disease and similarly rapid progressive clinical decline. Longitudinal imaging and clinical follow-up will be valuable in understanding factors affecting disease progression and outcome.


Assuntos
Leucoencefalopatias , Estudos Transversais , Progressão da Doença , Humanos , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/genética , Fenótipo
3.
Orphanet J Rare Dis ; 16(1): 328, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301277

RESUMO

BACKGROUND: Rare diseases are estimated to affect 150-350 million people worldwide. With advances in next generation sequencing, the number of known disease-causing genes has increased significantly, opening the door for therapy development. Rare disease research has therefore pivoted from gene discovery to the exploration of potential therapies. With impending clinical trials on the horizon, researchers are in urgent need of natural history studies to help them identify surrogate markers, validate outcome measures, define historical control patients, and design therapeutic trials. RESULTS: We customized a browser-accessible multi-modal (e.g. genetics, imaging, behavioral, patient-determined outcomes) database to increase cohort sizes, identify surrogate markers, and foster international collaborations. Ninety data entry forms were developed including family, perinatal, developmental history, clinical examinations, diagnostic investigations, neurological evaluations (i.e. spasticity, dystonia, ataxia, etc.), disability measures, parental stress, and quality of life. A customizable clinical letter generator was created to assist in continuity of patient care. CONCLUSIONS: Small cohorts and underpowered studies are a major challenge for rare disease research. This online, rare disease database will be accessible from all over the world, making it easier to share and disseminate data. We have outlined the methodology to become Title 21 Code of Federal Regulations Part 11 Compliant, which is a requirement to use electronic records as historical controls in clinical trials in the United States. Food and Drug Administration compliant databases will be life-changing for patients and families when historical control data is used for emerging clinical trials. Future work will leverage these tools to delineate the natural history of several rare diseases and we are confident that this database will be used on a larger scale to improve care for patients affected with rare diseases.


Assuntos
Qualidade de Vida , Doenças Raras , Bases de Dados Factuais , Feminino , Humanos , Pais , Gravidez , Doenças Raras/genética , Estados Unidos
4.
HGG Adv ; 2(3): 100034, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35047835

RESUMO

Leukodystrophies, genetic neurodevelopmental and/or neurodegenerative disorders of cerebral white matter, result from impaired myelin homeostasis and metabolism. Numerous genes have been implicated in these heterogeneous disorders; however, many individuals remain without a molecular diagnosis. Using whole-exome sequencing, biallelic variants in LSM7 were uncovered in two unrelated individuals, one with a leukodystrophy and the other who died in utero. LSM7 is part of the two principle LSM protein complexes in eukaryotes, namely LSM1-7 and LSM2-8. Here, we investigate the molecular and functional outcomes of these LSM7 biallelic variants in vitro and in vivo. Affinity purification-mass spectrometry of the LSM7 variants showed defects in the assembly of both LSM complexes. Lsm7 knockdown in zebrafish led to central nervous system defects, including impaired oligodendrocyte development and motor behavior. Our findings demonstrate that variants in LSM7 cause misassembly of the LSM complexes, impair neurodevelopment of the zebrafish, and may be implicated in human disease. The identification of more affected individuals is needed before the molecular mechanisms of mRNA decay and splicing regulation are added to the categories of biological dysfunctions implicated in leukodystrophies, neurodevelopmental and/or neurodegenerative diseases.

5.
Neurol Genet ; 6(3): e425, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32582862

RESUMO

OBJECTIVE: To expand the phenotypic spectrum of severity of POLR3-related leukodystrophy and identify genotype-phenotype correlations through study of patients with extremely severe phenotypes. METHODS: We performed an international cross-sectional study on patients with genetically proven POLR3-related leukodystrophy and atypical phenotypes to identify 6 children, 3 males and 3 females, with an extremely severe phenotype compared with that typically reported. Clinical, radiologic, and molecular features were evaluated for all patients, and functional and neuropathologic studies were performed on 1 patient. RESULTS: Each patient presented between 1 and 3 months of age with failure to thrive, severe dysphagia, and developmental delay. Four of the 6 children died before age 3 years. MRI of all patients revealed a novel pattern with atypical characteristics, including progressive basal ganglia and thalami abnormalities. Neuropathologic studies revealed patchy areas of decreased myelin in the cerebral hemispheres, cerebellum, brainstem, and spinal cord, with astrocytic gliosis in the white matter and microglial activation. Cellular vacuolization was observed in the thalamus and basal ganglia, and neuronal loss was evident in the putamen and caudate. Genotypic similarities were also present between all 6 patients, with one allele containing a POLR3A variant causing a premature stop codon and the other containing a specific intronic splicing variant (c.1771-7C>G), which produces 2 aberrant transcripts along with some wild-type transcript. CONCLUSIONS: We describe genotype-phenotype correlations at the extreme end of severity of the POLR3-related leukodystrophy spectrum and shed light on the complex disease pathophysiology.

6.
Dev Cell ; 46(4): 426-440.e5, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30057274

RESUMO

The oligodendrocyte lineage is responsible for myelination of the central nervous system. Post-translational modifications are known to regulate oligodendrocyte precursor cell (OPC) differentiation into mature myelinating oligodendrocytes. The role of arginine methylation during oligodendrocyte differentiation and myelination is still poorly understood. We generated mice depleted of PRMT5 in OPCs using Olig2-Cre, and these mice developed severe hypomyelination and died at the third post-natal week. PRMT5-deficient cells have lower levels of PDGFRα at the plasma membrane due to increased degradation by the Cbl E3 ligase. Mechanistically, the loss of arginine methylation at R554 of the PDGFRα intracellular domain unmasks a Cbl binding site at Y555. We observed the progressive decrease in PRMT5 during oligodendrocyte differentiation, and we show that one role of this decrease is to downregulate growth signals provided by PDGFRα to initiate oligodendrocyte differentiation and myelination. More broadly, the inhibition of PRMT5 may be used therapeutically to manipulate PDGFRα bioavailability.


Assuntos
Diferenciação Celular/fisiologia , Oligodendroglia/citologia , Proteína-Arginina N-Metiltransferases/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Cultivadas , Camundongos , Bainha de Mielina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/fisiologia
7.
J Neurosci ; 38(10): 2551-2568, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29437856

RESUMO

Noise exposure causes auditory nerve (AN) degeneration and hearing deficiency, though the proximal biological consequences are not entirely understood. Most AN fibers and spiral ganglion neurons are ensheathed by myelinating glia that provide insulation and ensure rapid transmission of nerve impulses from the cochlea to the brain. Here we show that noise exposure administered to mice of either sex rapidly affects myelinating glial cells, causing molecular and cellular consequences that precede nerve degeneration. This response is characterized by demyelination, inflammation, and widespread expression changes in myelin-related genes, including the RNA splicing regulator Quaking (QKI) and numerous QKI target genes. Analysis of mice deficient in QKI revealed that QKI production in cochlear glial cells is essential for proper myelination of spiral ganglion neurons and AN fibers, and for normal hearing. Our findings implicate QKI dysregulation as a critical early component in the noise response, influencing cochlear glia function that leads to AN demyelination and, ultimately, to hearing deficiency.SIGNIFICANCE STATEMENT Auditory glia cells ensheath a majority of spiral ganglion neurons with myelin, protect auditory neurons, and allow for fast conduction of electrical impulses along the auditory nerve. Here we show that noise exposure causes glial dysfunction leading to myelin abnormality and altered expression of numerous genes in the auditory nerve, including QKI, a gene implicated in regulating myelination. Study of a conditional mouse model that specifically depleted QKI in glia showed that QKI deficiency alone was sufficient to elicit myelin-related abnormality and auditory functional declines. These results establish QKI as a key molecular target in the noise response and a causative agent in hearing loss.


Assuntos
Nervo Coclear/patologia , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/patologia , Perda Auditiva Provocada por Ruído/genética , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Camundongos Quaking/genética , Proteínas de Ligação a RNA/genética , Animais , Cóclea/patologia , Feminino , Regulação da Expressão Gênica , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos CBA , Neuroglia/patologia , Neurônios/patologia , Gânglio Espiral da Cóclea/patologia
8.
Sci Rep ; 7(1): 7554, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28790308

RESUMO

The qkI gene encodes a family of RNA binding proteins alternatively spliced at its 3' end, giving rise to three major spliced isoforms: QKI-5, QKI-6 and QKI-7. Their expression is tightly regulated during brain development with nuclear QKI-5 being the most abundant during embryogenesis followed by QKI-6 and QKI-7 that peak during myelination. Previously, we generated a mouse conditional qkI allele where exon 2 is excised using Olig2-Cre resulting in QKI-deficient oligodendrocytes (OLs). These mice have dysmyelination and die at the third post-natal week. Herein, we performed a transcriptomic analysis of P14 mouse brains of QKI-proficient (QKI FL/FL;- ) and QKI-deficient (QKI FL/FL;Olig2-Cre ) OLs. QKI deficiency results in major global changes of gene expression and RNA processing with >1,800 differentially expressed genes with the top categories being axon ensheathment and myelination. Specific downregulated genes included major myelin proteins, suggesting that the QKI proteins are key regulators of RNA metabolism in OLs. We also identify 810 alternatively spliced genes including known QKI targets, MBP and Nfasc. Interestingly, we observe in QKI FL/FL;Olig2-Cre a switch in exon 2-deficient qkI mRNAs favoring the expression of the qkI-5 rather than the qkI-6 and qkI-7. These findings define QKI as regulators of alternative splicing in OLs including self-splicing.


Assuntos
Processamento Alternativo , Encéfalo/metabolismo , Perfilação da Expressão Gênica , Oligodendroglia/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Bainha de Mielina/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo
9.
J Neurosci ; 36(14): 4106-20, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-27053216

RESUMO

RNA binding proteins required for the maintenance of myelin and axoglial junctions are unknown. Herein, we report that deletion of the Quaking (QKI) RNA binding proteins in oligodendrocytes (OLs) using Olig2-Cre results in mice displaying rapid tremors at postnatal day 10, followed by death at postnatal week 3. Extensive CNS hypomyelination was observed as a result of OL differentiation defects during development. The QKI proteins were also required for adult myelin maintenance, because their ablation using PLP-CreERT resulted in hindlimb paralysis with immobility at ∼30 d after 4-hydroxytamoxifen injection. Moreover, deterioration of axoglial junctions of the spinal cord was observed and is consistent with a loss of Neurofascin 155 (Nfasc155) isoform that we confirmed as an alternative splice target of the QKI proteins. Our findings define roles for the QKI RNA binding proteins in myelin development and maintenance, as well as in the generation of Nfasc155 to maintain healthy axoglial junctions. SIGNIFICANCE STATEMENT: Neurofascin 155 is responsible for axoglial junction formation and maintenance. Using a genetic mouse model to delete Quaking (QKI) RNA-binding proteins in oligodendrocytes, we identify QKI as the long-sought regulator of Neurofascin alternative splicing, further establishing the role of QKI in oligodendrocyte development and myelination. We establish a new role for QKI in myelin and axoglial junction maintenance using an inducible genetic mouse model that deletes QKI in mature oligodendrocytes. Loss of QKI in adult oligodendrocytes leads to phenotypes reminiscent of the experimental autoimmune encephalomyelitis mouse model with complete hindlimb paralysis and death by 30 d after induction of QKI deletion.


Assuntos
Axônios , Moléculas de Adesão Celular/biossíntese , Moléculas de Adesão Celular/genética , Bainha de Mielina/genética , Fatores de Crescimento Neural/biossíntese , Fatores de Crescimento Neural/genética , Neuroglia , Proteínas de Ligação a RNA/genética , Processamento Alternativo , Animais , Animais Recém-Nascidos , Ataxia/genética , Regulação da Expressão Gênica/genética , Camundongos , Camundongos Knockout , Oligodendroglia , Paralisia/genética , Ratos , Ratos Sprague-Dawley
10.
Wiley Interdiscip Rev RNA ; 7(3): 399-412, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26991871

RESUMO

RNA-binding proteins (RBPs) are essential players in RNA metabolism including key cellular processes from pre-mRNA splicing to mRNA translation. The K homology-type QUAKING RBP is emerging as a vital factor for oligodendrocytes, monocytes/macrophages, endothelial cell, and myocyte function. Interestingly, the qkI gene has now been identified as the culprit gene for a patient with intellectual disabilities and is translocated in a pediatric ganglioglioma as a fusion protein with MYB. In this review, we will focus on the emerging discoveries of the QKI proteins as well as highlight the recent advances in understanding the role of QKI in human disease pathology including myelin disorders, schizophrenia and cancer. WIREs RNA 2016, 7:399-412. doi: 10.1002/wrna.1344 For further resources related to this article, please visit the WIREs website.


Assuntos
Doenças Desmielinizantes/fisiopatologia , Neoplasias/fisiopatologia , Proteínas de Ligação a RNA/metabolismo , Esquizofrenia/fisiopatologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...