Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Assoc Lab Anim Sci ; 61(6): 660-671, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36379474

RESUMO

Excessive sound, vibration, and light are detrimental to rodent welfare, yet these parameters are rarely recorded in vivaria. Whether housing environments exceed the suggested thresholds and which specific factors may alter these parameters is generally unknown. The goal of this study was to determine how environmental factors may alter sound, vibration, and light at the room and cage levels. Measurements were made using an ultrasonic microphone, accelerometer, and light sensor. Measurement sites were 1) in open air at a central location in 64 rooms located in 9 buildings, and 2) inside an empty mouse or rat cage containing chow, water, and bedding and located on an animal transfer station (n = 51) or housing rack (n = 102). Information collected for each transfer station and rack measurement included the year of manufacture, the species on the rack, and the number of cages on the rack. For each location, a baseline measurement was taken with the transfer station turned off, followed by another measurement after the transfer station was turned on. In general, many factors influenced ambient sound, vibration, and light, indicating that values are not uniform across rodent rooms in the same institution or across cages in a single room. Sound peaks capable of startling rodents were measured in association with hallway ultrasonic motion sensors and during cage change. Vibration and light intensity were generally low when cages were located on the rack. In contrast, active transfer stations had more vibration and light intensity, reaching levels that were potentially stressful for rodents. These data reflect the ambient sound, vibration, and light that rodents experience during normal facility operations. These patterns may extend to other locations, but given the variability in all parameters, the data highlight the need for institutions to conduct their own monitoring.


Assuntos
Abrigo para Animais , Vibração , Camundongos , Ratos , Animais , Roedores , Som
2.
J Am Assoc Lab Anim Sci ; 61(5): 424-431, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35995546

RESUMO

Pathogen monitoring and colony health management are critical components of any rodent research program. From an operational perspective, rodent facilities are protected from unwanted infectious agents by facility-specific bioexclusion criteria, sanitation of the physical environment, and personal protective equipment. Another important preventative measure is the use of room health levels to provide traffic patterns for animal care and research staff as they move between rooms of differing health status. For mice, our institution uses a tiered room level system with 6 defined categories, ranging from level 1 (strictest entry criteria) to 6 (least stringent entry criteria). Level 6 is defined as rooms with mice that have tested positive for mouse parvovirus (MPV) or mouse rotavirus (MRV) or both on sentinel serology at any point in time in the past and no decontamination. Because many of our mouse rooms had historically been positive for MPV and/or MRV and because of the high financial and logistic challenges of using repeated test-and-cull for elimination, we had tolerated the potential presence of MPV and MRV and had developed management practices that would promote 'burnout' (that is, elimination of infectious agents due to absence of susceptible hosts) of these pathogens. Analysis of sentinel data showed that we had 28 rooms in 4 facilities for which excluded pathogens had not been identified in 3 y or more. We therefore developed a hybrid testing strategy involving both PCR analysis and serology and implemented it in sentinels and in select colony mice to determine whether the rooms had undergone successful burnout and were free of MPV and MRV. All test results obtained during the assessment were negative for both viruses, and the rooms were subsequently upgraded to level 5 (free from excluded pathogens and allowing two-way movement in and out of housing room). All upgraded rooms have remained negative on subsequent quarterly routine sentinel serology for over 3 y. Our testing strategy for confirming pathogen burnout may be a useful and cost-efficient model for other academic rodent research programs that face a similar situation.


Assuntos
Infecções por Parvoviridae , Parvovirus , Doenças dos Roedores , Rotavirus , Animais , Abrigo para Animais , Camundongos , Infecções por Parvoviridae/veterinária
3.
J Am Assoc Lab Anim Sci ; 58(1): 58-64, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30497541

RESUMO

Invertebrates are often overlooked as laboratory animals, yet they are commonly used in toxicology, developmental, cellular and molecular biology, and radiation studies with euthanasia as an endpoint. Little is known regarding appropriate euthanasia methods for invertebrate species, particularly for Artemia. Here, we evaluated the AVMA-recommended 2-step method of euthanasia in brine shrimp (Artemia franciscana). Artemia were exposed first to anesthetic solutions of 60% alcohol, 2.5 mg/L eugenol, or 4 g/L tricaine methanesulfonate (TMS) and then were transferred to euthanasia solutions of 70% alcohol, 95% alcohol, or 10% neutral buffered formalin. We examined time to anesthesia, behavioral response to anesthesia, anesthesia recovery, and time to euthanasia. Our results show that 2.5 mg/L eugenol and 4 g/L TMS inconsistently achieved anesthesia. Although 60% alcohol produced anesthesia, the time to anesthesia varied among replicate groups, and exposure resulted in an increase in abnormal behavior. We therefore do not recommend any of the tested anesthetic solutions for use in Artemia. Although all 3 euthanasia solutions were effective, more research is needed to provide recommendations regarding euthanasia for this species.


Assuntos
Álcoois/farmacologia , Aminobenzoatos/farmacologia , Anestesia , Artemia/efeitos dos fármacos , Eugenol/farmacologia , Aminobenzoatos/química , Anestésicos/farmacologia , Animais , Eugenol/administração & dosagem , Eutanásia Animal , Solventes/farmacologia
4.
Surgery ; 149(2): 276-83, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20965535

RESUMO

BACKGROUND: The aim of the current study was to determine whether overexpression of heparin-binding epidermal growth factor-like growth factor (HB-EGF) could protect the intestines from injury after hemorrhagic shock and resuscitation in mice. METHODS: Hemorrhagic shock and resuscitation was induced in HB-EGF transgenic and wild type mice. Cross-reacting material 197 (5 mg/kg) was administered to a subset of HB-EGF transgenic mice to block the overexpressed HB-EGF. Intestinal histologic injury scores, intestinal epithelial cell apoptosis indices, and gut barrier function were determined. The Student t test and 1-way analysis of variance were employed to compare the differences between groups. RESULTS: All mice subjected to hemorrhagic shock and resuscitation had significantly increased intestinal histologic injury scores, apoptosis indices, and intestinal permeability compared with sham-operated mice. Compared with wild type mice, HB-EGF transgenic mice had significantly decreased histologic injury (mean injury grade 2.79 ± 0.84 vs 3.88 ± 1.43, P = .02), apoptosis indices (mean apoptosis index 8.77 ± 5.23 vs 17.91 ± 13.23, P = .03), and mucosal permeability (FITC-dextran 4 clearance 13.06 ± 5.67 vs 20.03 ± 7.81 nL/min/ m(2), P = .02) at 3 hours of reperfusion. HB-EGF transgenic mice subjected to hemorrhagic shock and resuscitation and treated with cross-reacting material 197 had a significantly increased histologic injury (mean injury grade 3.63 ± 1.00 vs 2.79 ± 0.84, P = .04) and mucosal permeability (FITC-dextran 4 clearance 22.87 ± 9.69 vs 13.06 ± 5.67 nL/min/cm2, P = .01) at 3 hours of reperfusion compared with non-cross-reacting material 197 treated transgenic mice, with no significant changes in apoptosis indices. Cross-reacting material 197 did not reverse the decreased apoptosis observed in HB-EGF transgenic mice subjected to hemorrhagic shock and resuscitation, which suggests that mechanisms in addition to decreased apoptosis may be responsible for the intestinal cytoprotective effects of endogenous HB-EGF overexpression. CONCLUSION: Overexpression of HB-EGF increases resistance to hemorrhagic shock and resuscitation in mice.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Intestinos/irrigação sanguínea , Traumatismo por Reperfusão/prevenção & controle , Choque Hemorrágico/complicações , Animais , Apoptose , Citoproteção , Regulação da Expressão Gênica , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Peptídeos e Proteínas de Sinalização Intercelular/genética , Intestinos/patologia , Camundongos , Camundongos Transgênicos , Ressuscitação
5.
J Pediatr Surg ; 45(10): 1933-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20920709

RESUMO

BACKGROUND: Necrotizing enterocolitis (NEC) is the most common gastrointestinal emergency and the leading surgical cause of death in premature infants. We have shown that administration of exogenous heparin-binding epidermal growth factor-like growth factor (HB-EGF) in mice protects the intestines from experimental NEC. The aim of the current study was to evaluate the effect of gain-of-function of endogenous HB-EGF on susceptibility to NEC. METHODS: Neonatal HB-EGF transgenic (TG) mice and their wild-type (WT) counterparts were exposed to experimental NEC. An additional group of HB-EGF TG pups were also exposed to NEC, but received the HB-EGF antagonist cross-reacting material 197 (CRM197) injected subcutaneously immediately after birth. To examine gut barrier function, HB-EGF TG and WT pups received intragastric fluorescein isothiocyanate-labeled dextran under basal and stressed conditions, and serum fluorescein isothiocyanate-labeled dextran levels were measured. RESULTS: Wild-type mice had an incidence of NEC of 54.2%, whereas HB-EGF TG mice had a significantly decreased incidence of NEC of 22.7% (P = .03). Importantly, administration of CRM197 to HB-EGF TG pups significantly increased the incidence of NEC to 65% (P = .004). HB-EGF TG mice had significantly decreased intestinal permeability compared to WT mice both under basal and stressed conditions. CONCLUSIONS: Our results provide evidence that overexpression of the HB-EGF gene decreases susceptibility to NEC and that administration of the HB-EGF antagonist CRM197 reverses this protective effect.


Assuntos
Proteínas de Bactérias/farmacologia , Dextranos/farmacologia , Toxina Diftérica/farmacologia , Enterocolite Necrosante/prevenção & controle , Fluoresceína-5-Isotiocianato/análogos & derivados , Peptídeos e Proteínas de Sinalização Intercelular/genética , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Enterocolite Necrosante/genética , Enterocolite Necrosante/patologia , Fluoresceína-5-Isotiocianato/farmacologia , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/fisiologia , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Intestinos/patologia , Camundongos , Camundongos Transgênicos , Permeabilidade/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...