Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(9): 15667-15679, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38859212

RESUMO

We report on the theoretical and experimental investigations of optical microcavities consisting in the plane-plane arrangement of a broadband high-reflectivity mirror and a suspended one-dimensional grating mirror possessing a high-quality factor Fano resonance. By varying the length of these cavities from the millimeter to the few-micron range, we observe at short lengths the reduction of the spectral linewidth predicted to occur for such a Fano cavity as compared to a conventional broadband mirror cavity with the same length and internal losses. Such narrow linewidth and small modevolume microcavities with high-mechanical quality ultrathin mirrors will be attractive for a wide range of applications within optomechanics and sensing.

2.
Opt Express ; 30(3): 3962-3972, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35209644

RESUMO

We report on the design and experimental characterization of a suspended silicon nitride subwavelength grating possessing a polarization-independent guided-mode resonance at oblique incidence. At this resonant wavelength we observe that the transverse intensity profile of the transmitted beam is consistent with a first-order spatial differentiation of the incident beam profile in the direction of the grating periodicity, regardless of the incident light polarization. These observations are corroborated by full numerical simulations. The simple one-dimensional and symmetric design, combined with the thinness and excellent mechanical properties of these essentially loss-free dieletric films, is attractive for applications in optical processing, sensing and optomechanics.

3.
J Opt Soc Am A Opt Image Sci Vis ; 38(11): 1714-1725, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34807033

RESUMO

The optical transmission of resonant guided-mode gratings patterned on suspended silicon nitride thin films and illuminated at normal incidence with a Gaussian beam is investigated both experimentally and theoretically. Effects due to the beam focusing and its finite size are accounted for by a phenomenological coupled-mode model whose predictions are found to be in very good agreement with the experimentally measured spectra for various grating structures and beam sizes, and which allow for a detailed analysis of the respective magnitude of these effects. These results are highly relevant for the design and optimization of such suspended structured films that are widely used for photonics, sensing, and optomechanics applications.

4.
Opt Express ; 29(5): 6481-6494, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33726168

RESUMO

We investigate first- and second-order spatial differentiation of an optical beam transverse profile using guided-mode resonances in thin, suspended subwavelength gratings. Highly reflective one-dimensional gratings are patterned on freestanding 200 nm-thick silicon nitride membranes using Electron Beam Lithography and plasma etching. The optical transmission of these gratings, designed for illumination with either TM or TE polarized light, are experimentally measured under normal and oblique incidence and found to be in excellent agreement with the predictions of an analytical coupled-mode model as well as Rigorous Coupled Wave Analysis numerical simulations. Intensity profiles consistent with high quality first- and second-order spatial differentiation of a Gaussian beam are observed in transmission at oblique and normal incidence, respectively. Such easy-to-fabricate, ultrathin and loss-free optical components may be attractive for beam shaping and optical information processing and computing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...