Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(8): 083401, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38457712

RESUMO

We characterize the equation of state (EoS) of the SU(N>2) Fermi-Hubbard Model (FHM) in a two-dimensional single-layer square optical lattice. We probe the density and the site occupation probabilities as functions of interaction strength and temperature for N=3, 4, and 6. Our measurements are used as a benchmark for state-of-the-art numerical methods including determinantal quantum Monte Carlo and numerical linked cluster expansion. By probing the density fluctuations, we compare temperatures determined in a model-independent way by fitting measurements to numerically calculated EoS results, making this a particularly interesting new step in the exploration and characterization of the SU(N) FHM.

2.
Phys Rev Lett ; 122(19): 193604, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31144925

RESUMO

We report on the experimental observation of multiorbital polarons in a two-dimensional Fermi gas of ^{173}Yb atoms formed by mobile impurities in the metastable ^{3}P_{0} orbital and a Fermi sea in the ground-state ^{1}S_{0} orbital. We spectroscopically probe the energies of attractive and repulsive polarons close to an orbital Feshbach resonance and characterize their coherence by measuring the quasiparticle residue. For all probed interaction parameters, the repulsive polaron is a long-lived quasiparticle with a decay rate more than 2 orders of magnitude below its energy. We formulate a many-body theory, which accurately treats the interorbital interactions in two dimensions and agrees well with the experimental results. Our work paves the way for the investigation of many-body physics in multiorbital ultracold Fermi gases.

3.
Phys Rev Lett ; 120(14): 143601, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29694150

RESUMO

We report on the experimental realization of a state-dependent lattice for a two-orbital fermionic quantum gas with strong interorbital spin exchange. In our state-dependent lattice, the ground and metastable excited electronic states of ^{173}Yb take the roles of itinerant and localized magnetic moments, respectively. Repulsive on-site interactions in conjunction with the tunnel mobility lead to spin exchange between mobile and localized particles, modeling the coupling term in the well-known Kondo Hamiltonian. In addition, we find that this exchange process can be tuned resonantly by varying the on-site confinement. We attribute this to a resonant coupling to center-of-mass excited bound states of one interorbital scattering channel.

4.
Science ; 358(6359): 90-94, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28983047

RESUMO

Strontium optical lattice clocks have the potential to simultaneously interrogate millions of atoms with a high spectroscopic quality factor of 4 × 1017 Previously, atomic interactions have forced a compromise between clock stability, which benefits from a large number of atoms, and accuracy, which suffers from density-dependent frequency shifts. Here we demonstrate a scalable solution that takes advantage of the high, correlated density of a degenerate Fermi gas in a three-dimensional (3D) optical lattice to guard against on-site interaction shifts. We show that contact interactions are resolved so that their contribution to clock shifts is orders of magnitude lower than in previous experiments. A synchronous clock comparison between two regions of the 3D lattice yields a measurement precision of 5 × 10-19 in 1 hour of averaging time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...