Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Lasers Surg Med ; 54(5): 790-803, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35212407

RESUMO

OBJECTIVES: The purpose of this study was to show that optical coherence tomography (OCT) and thermal imaging can be used to monitor changes in the structure and activity of caries lesions over time after treatment with silver diamine fluoride (SDF). METHODS: Artificial caries lesions were formed on enamel and dentin bovine blocks. Each block was partitioned into five windows with the central three windows exposed to a demineralization solution to create lesions: one sound window served as a sound control (SC), one sound window was exposed to SDF to serve as a test control (SCT), one lesion window served as a lesion control (LC), one lesion window received one application of SDF (L1), while the other lesion window received two applications of SDF (L2). Each window was scanned using OCT before SDF application, and every week subsequently, for 12 weeks after initial SDF treatment. Changes in the mean intensity and the width of the peak of increased reflectivity due to the lesion and SDF along with the intensity at a depth of 180 µm from the surface representing optical penetration through the lesion were monitored. Changes in the heat lost, ΔQ (temperature integrated over time) of each window during drying with air were also monitored using a thermal imaging camera. Transverse microradiography (TMR), and high-resolution microscopy were also used for the analysis of selected samples. RESULTS: The reflectivity and optical penetration of sound and lesion areas of enamel and dentin manifested significant changes in OCT images after SDF application. Thermal imaging showed significant differences in ΔQ indicative of permeability changes in the sound and lesion areas of enamel and dentin after SDF application.


Assuntos
Cárie Dentária , Tomografia de Coerência Óptica , Animais , Bovinos , Cárie Dentária/patologia , Dentina/patologia , Fluoretos Tópicos , Estudo de Prova de Conceito , Compostos de Amônio Quaternário , Compostos de Prata , Tomografia de Coerência Óptica/métodos
2.
Lasers Surg Med ; 53(7): 968-977, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33442896

RESUMO

BACKGROUND AND OBJECTIVES: Previous studies have shown that large changes in the diffuse reflectivity of caries lesions during drying with air can be used to assess lesion activity. The largest changes occur at short wavelength infrared (SWIR) wavelengths coincident with high water absorption. The strongest water absorption in the SWIR occurs at 1950 nm. In this study changes in the reflectivity of simulated lesions with varying degrees of remineralization was measured at 1500-2340 nm and at 1950 nm as the samples were dried with air. STUDY DESIGN/MATERIALS AND METHODS: Twenty bovine enamel surfaces each with five treatment windows were exposed to two demineralization/remineralization regimens to produce simulated lesions of varying depth, severity, and mineral gradients. An extended range tungsten-halogen lamp with a long pass filter (1500-2340 nm) and a broadband amplified spontaneous emission source centered near the peak of the water-absorption band at 1950-nm were used as light sources and an extended range InGaAs camera (1000-2340 nm) was used to acquire reflected light images as the samples were dried with air. Lesions were also assessed using digital microscopy, polarized light microscopy, optical coherence tomography, and transverse microradiography. RESULTS: Both wavelength ranges showed extremely high lesion contrast (>0.9) for all six lesion treatment windows in both models. The change in contrast (ΔI) was significantly higher for the 1950 nm broadband source for all the intact lesion windows compared with the 1500-2340 nm wavelength range. CONCLUSION: SWIR light at 1950 nm yields extremely high contrast of demineralization and appears to be the optimum wavelength for the assessment of lesion activity on tooth coronal surfaces. Lasers Surg. Med. 00:00-00, 2020. © 2020 Wiley Periodicals LLC.


Assuntos
Desmineralização do Dente , Animais , Bovinos , Esmalte Dentário/diagnóstico por imagem , Microscopia de Polarização , Espectroscopia de Luz Próxima ao Infravermelho , Tomografia de Coerência Óptica , Desmineralização do Dente/diagnóstico por imagem
3.
Artigo em Inglês | MEDLINE | ID: mdl-33612912

RESUMO

New imaging technologies are needed for the clinical assessment of lesions on root surfaces. It is not sufficient to simply detect caries lesions; methods are needed to assess lesion depth, structural composition and activity to determine if chemical intervention has the potential to be effective and if remineralization has occurred. Lesions were monitored using CP-OCT during lesion dehydration to assess the lesion structure and any shrinkage. Thermal imaging at 6-10 µm wavelengths and short wavelength-IR imaging at 1450-1750-nm were used to monitor thermal emission during lesion dehydration to assess lesion activity. Imaging probes were custom fabricated for clinical use. We present the first clinical results of a small feasibility study employing CP-OCT, thermal and SWIR imaging to assess lesion activity in vivo on thirty test subjects with suspected root caries lesions.

4.
Lasers Surg Med ; 52(3): 247-258, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31236996

RESUMO

BACKGROUND AND OBJECTIVES: Recent studies have demonstrated that near-infrared (IR) imaging can be used to acquire high-contrast images of root caries and calculus on the root surfaces of extracted teeth at wavelengths longer than 1450 nm. The purpose of this study was to determine if image-guided laser ablation can be used to selectively remove calculus from tooth surfaces with minimal damage to the underlying sound cementum and dentin. MATERIALS AND METHODS: In this study, sequential near-IR images at 1500-1700 nm were used to guide a diode-pumped (DPSS) Er:YAG laser for the removal of calculus from the root surfaces of 10 extracted teeth. The selectivity of removal was assessed using digital microscopy, optical coherence tomography, and surface profilometry. RESULTS: Calculus was removed rapidly with minimal damage to the underlying sound cementum and dentin. Image-guided ablation achieved high-selectivity, the mean volume of calculus removal was more than 27 times higher than the mean loss of cementum. CONCLUSIONS: We have demonstrated that near-IR image-guided laser ablation can be used for the selective removal of calculus from root surfaces ex vivo. Additionally, we have demonstrated that a diode-pumped solid-state Er:YAG laser is well suited for selective removal. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.


Assuntos
Cálculos Dentários/terapia , Lasers Semicondutores/uso terapêutico , Raiz Dentária/diagnóstico por imagem , Desenho de Equipamento , Tecnologia de Fibra Óptica , Humanos , Técnicas In Vitro , Raios Infravermelhos , Microscopia de Polarização
5.
Artigo em Inglês | MEDLINE | ID: mdl-31000908

RESUMO

Selective removal of dental calculus with high precision is best accomplished using lasers operating at high pulse repetition rates focused to a small spot size to limit damage to sound tissues. Conventional flash-lamp pumped Er:YAG lasers are poorly suited for this purpose, but new diode-pumped solid state (DPSS) Er:YAG lasers have become available operating at high pulse repetition rates. The purpose of this study was to determine if image-guided laser ablation can be used to selectively remove calculus from tooth surfaces with minimal damage to the underlying sound cementum and dentin. A DPSS Er:YAG laser system was used to selectively remove calculus from ten extracted teeth using sequential SWIR images at 1500-1750-nm. The selectivity of removal was assessed using digital microscopy and optical coherence tomography. Calculus was removed with minimal damage to the underlying sound cementum and dentin.

6.
J Biomed Opt ; 24(3): 1-8, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30834721

RESUMO

Most new caries lesions are found in the pits and fissures of the occlusal surface. Radiographs have extremely low sensitivity for early occlusal decay, and by the time the lesion is severe enough to appear on a radiograph, it typically has penetrated well into the dentin and surgical intervention is required. The occlusal surfaces are often heavily stained, and visual and tactile detection have poor sensitivity and specificity. Previous near-infrared imaging studies at wavelengths beyond 1300 nm have demonstrated that stains are not visible and demineralization on the occlusal surfaces can be viewed without interference from stains. The objective of our study is to determine how the contrast between sound and lesion areas on occlusal surfaces varies with wavelength from the visible to 2350 nm and determine to what degree stains interfere with that contrast. The lesion contrast for reflectance is measured in 55 extracted teeth with suspected occlusal lesions from 400 to 2350 nm employing silicon and indium gallium arsenide imaging arrays. In addition, the lesion contrast is measured on 25 extracted teeth with suspected occlusal lesions from 400 to 1600 nm in reflectance and from 830 to 1400 nm in transillumination before and after stains are removed using a ultrasonic scaler. The highest lesion contrast in reflectance is measured at wavelengths >1700 nm. Stains interfere significantly at wavelengths <1150 nm (400 to 1150) for both reflectance and transillumination measurements. Our study suggests that the optimum wavelengths for imaging decay in the occlusal surfaces are >1700 nm for reflectance (1700 to 2350 nm) and near 1300 nm (1250 to 1350 nm) for transillumination.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Desmineralização do Dente/diagnóstico por imagem , Descoloração de Dente/diagnóstico por imagem , Dente/diagnóstico por imagem , Humanos , Dente/patologia , Descoloração de Dente/patologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-30923417

RESUMO

Near Infrared Reflectance (NIR) is a new imaging technology that detects dental caries (decay) on tooth occlusal surfaces and in the interproximal contact sites between teeth. Conventional techniques, mostly dental x-rays, do not provide the high sensitivity and specificity at the vulnerable pits and fissure regions. The contrast of demineralization on tooth surfaces changes with increasing severity and the magnitude of that change with depth depends on the wavelength. The purpose of this study is to determine how the contrast changes with depth as a function of wavelength. Demineralization of varying depth was produced in 1.5 × 1.5 mm exposed windows after 1, 2, 3, 4, and 5 days of exposure to a demineralizing solution at pH 4.5. Lesions were imaged at 405, 630, 850, 1300, 1460, 1535, 1675, and 1950-nm with multiple imaging systems. The highest lesion contrast was measured at 1950-nm.

8.
Biomed Opt Express ; 9(10): 5026-5036, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30319919

RESUMO

New diode-pumped solid state (DPSS) Er:YAG lasers have become available operating at high pulse repetition rates. These lasers are ideally suited for integration with laser scanning systems for the selective removal of dental decay and composite restorative materials from tooth surfaces. The purpose of this study was to determine if a DPSS Er:YAG laser system is suitable for the selective removal of composite from tooth surfaces. Relative ablation rates of composite and enamel were determined and composite was removed from tooth surfaces using a DPSS Er:YAG laser. Composite was removed very rapidly with ablation rates approaching 50-µm per pulse. A fluence of ~50 J/cm2 appeared optimal for the removal of composite and damage to the enamel was limited to less than 100-µm after the removal of composite as thick as 700-800-µm; however, dentin is removed at similar rates to composite. The DPSS Er:YAG laser appears to be better suited for the removal of composite than conventional flash-lamp pumped Er:YAG lasers since composite is ablated at higher rates than dental enamel and the high pulse repetition rates enable greater selectivity while maintaining high removal rates.

9.
Am J Transl Res ; 10(9): 2990-2995, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30323885

RESUMO

PURPOSE: To evaluate the effects of collagen crosslinking with riboflavin 0.1% and ultraviolet-A (UVA) 5.4 J on bond strength of total-etch or self-etch adhesives on caries-affected dentin. METHODS: Sixty human caries-affected molars were randomly divided into three groups: control (C), riboflavin (R), and riboflavin + 3 minutes of UVA (R+UVA). After each treatment, either total-etch or self-etch adhesives were applied following the manufacturer's instructions, and composite stubs were built up on the treated surfaces. They were de-bonded in tension to measure bond strength. Twelve extra molars were used for scanning electron microscope (SEM) analysis. RESULTS: We observed that R+UVA-treated group yielded significantly higher bond strengths for carious dentin when the total-etch adhesive was applied. For the self-etch adhesive, no statistical differences were observed between the three pretreated-groups. CONCLUSION: Our results, for the first time, are suggesting that etching with phosphoric acid potentialized the benefits of R+UVA crosslinking on carious dentin. R+UVA dentinal collagen crosslinking improves bond strength for caries-affected dentin when using a total-etch adhesive, but did not affect it when using a self-etch adhesive.

10.
Artigo em Inglês | MEDLINE | ID: mdl-29497229

RESUMO

In vivo and in vitro studies have demonstrated that near-infrared (NIR) light at λ=1300-1700-nm can be used to acquire high contrast images of enamel demineralization without interference of stains. The objective of this study was to determine if a relationship exists between the NIR image contrast of occlusal lesions and the depth of the lesion. Extracted teeth with varying amounts of natural occlusal decay were measured using a multispectral-multimodal NIR imaging system which captures λ=1300-nm occlusal transillumination, and λ=1500-1700-nm cross-polarized reflectance images. Image analysis software was used to calculate the lesion contrast detected in both images from matched positions of each imaging modality. Samples were serially sectioned across the lesion with a precision saw, and polarized light microscopy was used to measure the respective lesion depth relative to the dentinoenamel junction. Lesion contrast measured from NIR cross-polarized reflectance images positively correlated (p<0.05) with increasing lesion depth and a statistically significant difference between inner enamel and dentin lesions was observed. The lateral width of pit and fissures lesions measured in both NIR cross-polarized reflectance and NIR transillumination positively correlated with lesion depth.

11.
Artigo em Inglês | MEDLINE | ID: mdl-30686852

RESUMO

Most new lesions are found in the pits and fissures of the occlusal surface. Radiographs have extremely low sensitivity for early occlusal decay and by the time the lesion is severe enough on a radiograph it typically has penetrated well into the dentin and surgical intervention is required. The occlusal surfaces are heavily stained and visual and tactile methods for their detection also have poor sensitivity and specificity. Previous studies at wavelengths beyond 1300-nm have demonstrated that stains are not visible and demineralization on the occlusal surfaces can be viewed without interference from stains. New extended range InGaAs near-IR cameras allow access to wavelengths beyond 1700-nm. The objective of this study was to determine how the contrast of occlusal lesions varies with wavelength from the visible to 2350-nm. The lesion contrast was measured in 55 extracted teeth with suspected occlusal lesions using reflectance measurements from 400-2350-nm using Si and InGaAs imaging arrays. The highest lesion contrast in reflectance was measured at wavelengths greater than 1700-nm. Stains interfered significantly at wavelengths shorter than 1150-nm. This study indicates that the optimum wavelengths for reflectance imaging decay in the occlusal surfaces are greater than 1700-nm.

12.
Lasers Surg Med ; 49(10): 913-927, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28699676

RESUMO

OBJECTIVE: Ultraviolet (UV) and infrared (IR) lasers can be used to specifically target protein, water, and mineral, respectively, in dental hard tissues to produce varying changes in surface morphology, permeability, reflectivity, and acid resistance. The purpose of this study was to explore the influence of laser irradiation and topical fluoride application on the surface morphology, permeability, reflectivity, and acid resistance of enamel and dentin to shed light on the mechanism of interaction and develop more effective treatments. METHODS: Twelve bovine enamel surfaces and twelve bovine dentin surfaces were irradiated with various combinations of lasers operating at 0.355 (Freq.-tripled Nd:YAG (UV) laser), 2.94 (Er:YAG laser), and 9.4 µm (CO2 laser), and surfaces were exposed to an acidulated phosphate fluoride gel and an acid challenge. Changes in the surface morphology, acid resistance, and permeability were measured using digital microscopy, polarized light microscopy, near-IR reflectance, fluorescence, polarization sensitive-optical coherence tomography (PS-OCT), and surface dehydration rate measurements. RESULTS: Different laser treatments dramatically influenced the surface morphology and permeability of both enamel and dentin. CO2 laser irradiation melted tooth surfaces. Er:YAG and UV lasers, while not melting tooth surfaces, showed markedly different surface roughness. Er:YAG irradiation led to significantly rougher enamel and dentin surfaces and led to higher permeability. There were significant differences in acid resistance among the various treatment groups. CONCLUSION: Surface dehydration measurements showed significant changes in permeability after laser treatments, application of fluoride and after exposure to demineralization. CO2 laser irradiation was most effective in inhibiting demineralization on enamel while topical fluoride was most effective for dentin surfaces. Lasers Surg. Med. 49:913-927, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Ácidos/efeitos adversos , Esmalte Dentário/cirurgia , Dentina/cirurgia , Lasers de Gás/uso terapêutico , Lasers de Estado Sólido/uso terapêutico , Desmineralização do Dente/prevenção & controle , Administração Tópica , Animais , Cariostáticos/administração & dosagem , Cariostáticos/farmacologia , Bovinos , Terapia Combinada , Esmalte Dentário/efeitos dos fármacos , Esmalte Dentário/metabolismo , Esmalte Dentário/patologia , Dentina/efeitos dos fármacos , Dentina/metabolismo , Dentina/patologia , Fluoretos/administração & dosagem , Fluoretos/farmacologia , Técnicas In Vitro , Microscopia Eletrônica de Varredura , Microscopia de Polarização , Permeabilidade/efeitos dos fármacos , Permeabilidade/efeitos da radiação , Fosfatos/administração & dosagem , Fosfatos/farmacologia , Desmineralização do Dente/induzido quimicamente , Desmineralização do Dente/metabolismo , Desmineralização do Dente/patologia
13.
Proc SPIE Int Soc Opt Eng ; 100442017 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-28680191

RESUMO

UV and IR lasers can be used to specifically target protein, water, and the mineral phase of dental hard tissues to produce varying changes in surface morphology. In this study, we irradiated enamel and dentin surfaces with various combinations of lasers operating at 0.355, 2.94, and 9.4 µm, exposed those surfaces to topical fluoride, and subsequently evaluated the influence of these changes on surface morphology and permeability. Digital microscopy and surface dehydration rate measurements were used to monitor changes in the samples overtime. The surface morphology and permeability (dehydration rate) varied markedly with the different laser treatments on enamel. On dentin, fluoride was most effective in reducing the permeability.

14.
Proc SPIE Int Soc Opt Eng ; 100442017 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-28626283

RESUMO

Bitewing radiography is still considered state-of-the-art diagnostic technology for assessing cavitation within approximal carious dental lesions, even though radiographs cannot resolve cavitated surfaces but instead are used to measure lesion depth in order to predict cavitation. Clinicians need new technologies capable of determining whether approximal carious lesions have become cavitated because not all lesions progress to cavitation. Assessing lesion cavitation from near-infrared (NIR) imaging methods holds great potential due to the high transparency of enamel in the NIR region from λ=1300-1700-nm, which allows direct visualization and quantified measurements of enamel demineralization. The objective of this study was to measure the change in lesion appearance between non-cavitated and cavitated lesions in artificially generated lesions using NIR imaging modalities (two-dimensional) at λ =1300-nm and λ=1450-nm and cross-polarization optical coherence tomography (CP-OCT) (thee-dimensional) λ =1300-nm. Extracted human posterior teeth with sound proximal surfaces were chosen for this study and imaged before and after artificial lesions were made. A high speed dental hand piece was used to create artificial cavitated proximal lesions in sound samples and imaged. The cavitated artificial lesions were then filled with hydroxyapatite powder to simulate non-cavitated proximal lesions.

15.
Proc SPIE Int Soc Opt Eng ; 100442017 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-28626287

RESUMO

A major advantage of composite restoration materials is that they can be color matched to the tooth. However, this presents a challenge when composites fail and they need to be replaced. Dentists typically spend more time repairing and replacing composites than placing new restorations. We have shown in previous studies that high-contrast images of composite can be acquired in occlusal transmission mode at near-IR wavelengths coincident with higher water absorption. The purpose of this study was to determine if similar high-contrast images can be acquired in reflectance mode at longer wavelengths where water absorption is even higher. Extracted human teeth with existing composite restoration (n=14) were imaged at wavelengths from 900-2300 using an extended range InGaAs camera. Our results indicate that NIR wavelengths longer than 1400-nm coincident with higher water absorption yield the highest contrast between dental composites and tooth structure in reflectance.

16.
Proc SPIE Int Soc Opt Eng ; 100442017 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-28450756

RESUMO

The optical properties of human dentin can change markedly due to aging, friction from opposing teeth, and acute trauma, resulting in the formation of transparent or sclerotic dentin with increased mineral density. The objective of this study was to determine the optical attenuation coefficient of human dentin tissues with different mineral densities in the near-infrared (NIR) spectral regions from 1300-2200 nm using NIR transillumination and optical coherence tomography (OCT). N=50 dentin samples of varying opacities were obtained by sectioning whole extracted teeth into ~ 150 µm transverse sections at the cemento-enamel junction or the apical root. Transillumination images were acquired with a NIR camera and attenuation measurements were acquired at various NIR wavelengths using a NIR sensitive photodiode. Samples were imaged with transverse microradiography (gold standard) in order to determine the mineral density of each sample.

17.
Proc SPIE Int Soc Opt Eng ; 100442017 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-28450757

RESUMO

Selective removal of caries lesions with high precision is best accomplished using lasers operating at high pulse repetition rates utilizing small spot sizes. Conventional flash-lamp pumped Er:YAG lasers are poorly suited for this purpose, but new diode-pumped solid-state (DPSS) Er:YAG lasers have become available operating at high pulse repetition rates. Microradiography was used to determine the mineral content of the demineralized dentin of 200-µm thick sections with natural caries lesions prior to laser ablation. The purpose of this study was to explore the use of a DPSS Er:YAG laser for the selective removal of demineralized dentin and natural occlusal lesions on extracted teeth.

18.
Lasers Surg Med ; 49(3): 215-224, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28339115

RESUMO

INTRODUCTION: Radiographic methods have poor sensitivity for occlusal lesions and by the time the lesions are radiolucent they have typically progressed deep into the dentin. New more sensitive imaging methods are needed to detect occlusal lesions. In this study, cross-polarization optical coherence tomography (CP-OCT) and near-IR imaging were used to image questionable occlusal lesions (QOC's) that were not visible on radiographs but had been scheduled for restoration on 30 test subjects. METHODS: Near-IR reflectance and transillumination probes incorporating a high definition InGaAs camera and near-IR broadband light sources were used to acquire images of the lesions before restoration. The reflectance probe utilized cross-polarization and operated at wavelengths from 1,500 to 1,700 nm where there is an increase in water absorption for higher contrast. The transillumination probe was operated at 1,300 nm where the transparency of enamel is highest. Tomographic images (6 × 6 × 7 mm3 ) of the lesions were acquired using a high-speed swept-source CP-OCT system operating at 1,300 nm before and after removal of the suspected lesion. RESULTS: Near-IR reflectance imaging at 1,500-1,700 nm yielded significantly higher contrast (P < 0.05) of the demineralization in the occlusal grooves compared with visible reflectance imaging. Stains in the occlusal grooves greatly reduced the lesion contrast in the visible range yielding negative values. Only half of the 26 lesions analyzed showed the characteristic surface demineralization and increased reflectivity below the dentinal-enamel junction (DEJ) in 3D OCT images indicative of penetration of the lesion into the dentin. CONCLUSION: This study demonstrates that near-IR imaging methods have great potential for improving the early diagnosis of occlusal lesions. Lasers Surg. Med. 49:215-224, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Cárie Dentária/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Tomografia de Coerência Óptica/métodos , Transiluminação/métodos , Adolescente , Adulto , Análise de Variância , Estudos de Coortes , Cárie Dentária/patologia , Fissuras Dentárias/diagnóstico por imagem , Fissuras Dentárias/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Desmineralização do Dente/diagnóstico por imagem , Desmineralização do Dente/patologia , Transiluminação/instrumentação , Adulto Jovem
19.
J Biophotonics ; 10(3): 433-445, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27060450

RESUMO

The purpose of this study was to evaluate thermal and near-infrared (NIR) reflectance imaging methods for the assessment of the activity of root caries lesions. In addition, changes in the lesion structure were monitored with polarization sensitive optical coherence tomography (PS-OCT). Artificial bovine and natural root caries lesions were imaged with PS-OCT, and their dehydration rate was measured with thermal and NIR cameras. The lesion activity of the natural root caries samples was also assessed by two clinicians by conventional means according to ICDAS II guidelines. The thickness of the highly mineralized transparent surface layer measured using PS-OCT increased and the area enclosed by the time-temperature curve, ΔQ, measured with thermal imaging decreased significantly with longer periods of remineralization in simulated dentin lesions, but the NIR reflectance intensity differences, ΔI, failed to show any significant relationship with the degree of remineralization. The PS-OCT algorithm for the automated assessment of remineralization successfully detected the highly mineralized surface layer on both natural and simulated lesions. Thermal imaging provided the most accurate diagnosis of root caries lesion activity. These results demonstrate that thermal imaging and PS-OCT may be ideally suited for the nondestructive root caries lesion activity during a clinical examination.


Assuntos
Raios Infravermelhos , Cárie Radicular/diagnóstico por imagem , Tomografia de Coerência Óptica , Algoritmos , Animais , Área Sob a Curva , Bovinos , Dentina/diagnóstico por imagem , Dentina/patologia , Humanos , Microrradiografia , Microscopia de Polarização , Modelos Anatômicos , Reconhecimento Automatizado de Padrão , Curva ROC , Cárie Radicular/patologia , Temperatura , Remineralização Dentária
20.
Lasers Surg Med ; 48(9): 828-836, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27389018

RESUMO

INTRODUCTION: Several studies suggest that near-IR imaging methods at wavelengths longer than 1,300 nm have great potential for caries detection. In this study, the diagnostic performance of both near-IR transillumination and near-IR reflectance was assessed on teeth scheduled for extraction due to orthodontic treatment (n = 109 teeth on 40 test subjects). METHODS: Three intra-oral near-IR imaging probes were fabricated for the acquisition of in vivo images using a high definition InGaAs camera and near-IR broadband light sources. Two transillumination probes provided occlusal and approximal images using 1,300 nm light which manifests the highest transparency in enamel. A third reflectance probe utilized cross-polarization and operated at wavelengths greater than 1,500 nm where water absorption is higher which reduces the reflectivity of sound tissues, significantly increasing lesion contrast. Teeth were collected after extraction and sectioned and examined with polarized light microscopy and microradiography which served as the gold standard. In addition, radiographs were taken of the teeth and the diagnostic performance of near-IR imaging was compared with radiography. RESULTS: Near-IR imaging was significantly more sensitive (P < 0.05) than radiography for the detection of lesions on both occlusal and proximal surfaces. CONCLUSION: Near-IR imaging methods are ideally suited for screening all tooth surfaces for carious lesions. Lasers Surg. Med. 48:828-836, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Cárie Dentária/diagnóstico , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Transiluminação/métodos , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Radiografia Dentária , Espectroscopia de Luz Próxima ao Infravermelho/instrumentação , Transiluminação/instrumentação , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...