Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 360: 142437, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797208

RESUMO

The construction and modification of a Graphene Oxide (GO) membrane, incorporating polyvinyl alcohol (PVA) cross-linked with maleic acid (MA) and supported by a nylon membrane, have been successfully completed. Systematic variations in PVA and MA concentrations were conducted to achieve membranes with favorable characteristics, stability, and excellent desalination performance. Optimization studies utilizing the Central Composite Design (CCD) revealed that the most optimal desalination results were obtained with 10 mL of PVA (0.1 mg mL-1) and 0.9 M of MA (GO-MA0.9-PVA10/Nylon membrane). Experimental findings demonstrated that the inclusion of PVA and MA resulted in an increased interlayer distance of GO and enhanced membrane stability. The addition of PVA increases GO membrane hydrophilicity, while the addition of MA reduces membrane hydrophilicity. The GO-MA0.9-PVA10/Nylon membrane exhibited the highest desalination performance, boasting a rejection value exceeding >99.9% and a permeance of 18.76 kg m-2.h-1 under 1% NaCl feed at a temperature of 50 °C. This membrane demonstrated consistent desalination performance stability over an extended period of up to 70 h. Moreover, it exhibited durability through 8 cycles of 24-h usage with washing treatment. In conclusion, the GO-MA0.9-PVA10/Nylon membrane is strongly recommended for practical applications, outperforming other membrane options based on the comprehensive evaluation of its stability and desalination efficiency.


Assuntos
Grafite , Membranas Artificiais , Álcool de Polivinil , Cloreto de Sódio , Purificação da Água , Grafite/química , Álcool de Polivinil/química , Purificação da Água/métodos , Cloreto de Sódio/química , Filtração/métodos , Maleatos/química , Salinidade , Interações Hidrofóbicas e Hidrofílicas , Nylons/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-36833612

RESUMO

(1) Background: This study aimed to quantify the health and economic impacts of air pollution in Jakarta Province, the capital of Indonesia. (2) Methods: We quantified the health and economic burden of fine particulate matter (PM2.5) and ground-level Ozone (O3), which exceeds the local and global ambient air quality standards. We selected health outcomes which include adverse health outcomes in children, all-cause mortality, and daily hospitalizations. We used comparative risk assessment methods to estimate health burdens attributable to PM2.5 and O3, linking the local population and selected health outcomes data with relative risks from the literature. The economic burdens were calculated using cost-of-illness and the value of the statistical life-year approach. (3) Results: Our results suggest over 7000 adverse health outcomes in children, over 10,000 deaths, and over 5000 hospitalizations that can be attributed to air pollution each year in Jakarta. The annual total cost of the health impact of air pollution reached approximately USD 2943.42 million. (4) Conclusions: By using local data to quantify and assess the health and economic impacts of air pollution in Jakarta, our study provides timely evidence needed to prioritize clean air actions to be taken to promote the public's health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Criança , Humanos , Poluentes Atmosféricos/análise , Exposição Ambiental/efeitos adversos , Indonésia , Poluição do Ar/análise , Material Particulado/análise , Efeitos Psicossociais da Doença
3.
Materials (Basel) ; 14(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499183

RESUMO

Bamboo, a fast-growing plant from Asia, is used as building material with unique properties, while exhibiting fast degradation due to its hydrophobicity. Therefore, many attempts have been implemented using several technologies for bamboo modification to alter the hydrophobicity. Most previous studies producing superhydrophobic properties are conducted by using tetraethoxysilane (TEOS) as a precursor agent. However, this method, using TEOS with harmful properties and unaffordable compounds, requires many steps to accomplish the experimental method. Therefore, this paper employed geothermal solid waste as a silica source of the precursor. Thus, an effective and efficient method was applied to prepare superhydrophobic coating by using a precursor of geothermal silica and further modification using hexamethyldisilazane (HMDS) and trimethylchlorosilane (TMCS). The research was executed by the full factorial statistical method using two numerical variables (HMDS/TMCS concentration and silica concentration) and one categorical variable (solvent types). The uncoated material revealed higher weight gain in mass and moisture content than that of the coated bamboo after the soil burial test to assess the durability of the bamboo. However, the durability of superhydrophobic coating realized hydrophobic performance for both agents during sand abrasion for a total of 120 s at an angle of 45°. Statistical results showed the optimum contact angle (CA) achieved in superhydrophobic performance with lower silica concentration for HMDS concentration and the appropriate solvent of n-hexane for HMDS and iso-octane for TMCS. All results were supported using many instruments of analysis to confirm the step-by-step alteration of geothermal silica to be used as a superhydrophobic coating, such as XRF, XRD, FTIR, SEM, and SEM EDX.

4.
Artigo em Inglês | MEDLINE | ID: mdl-29562210

RESUMO

This work investigated the synthesis of dimethoxydimethylsilane:tetraethoxysilane (DMDMS:TEOS) silica thin films as well as the effect of DMDMS:TEOS molar ratios and calcination temperature on hydrophobic properties of silica thin films and its correlation with the FTIR spectra behaviour. The silica thin films were synthesized by sol-gel method using combination of DMDMS and TEOS as silica precursors, ethanol as solvent and ammonia as catalyst, with DMDMS and TEOS molar ratio of 10:90, 25:75, 50:50, 75:25 and 90:10. The results showed that DMDMS:TEOS molar ratio had significant impact on the hydrophobic properties of silica thin films coated on a glass surface. Furthermore, the correlation between water contact angle (WCA) and DMDMS:TEOS molar ratio was found to be in a parabolic shape. Concurrently, the maximum apex of the parabola obtained was observed on the DMDMS:TEOS molar ratio of 50:50 for all calcination temperature. It was clearly observed that the silica xerogel exhibiting notable change in relative peak intensities showed FTIR peak splitting of υasymmetric Si-O-Si. To uncover what happened at the FTIR peak, the deconvolution was conducted in Gaussian approach. It was established that the changes in the Gaussian peak component were related to DMDMS:TEOS molar ratios and the calcination temperature that allowed us to tailor the DMDMS:TEOS silica polymer structure model based on the peak intensity ratios. With the increase of DMDMS:TEOS molar ratio, the ratio of (cyclic Si-O-Si)/(linear Si-O-Si) decreased, whilst the ratio of (C-H)/(linear Si-O-Si) increased. Both ratios intersected at DMDMS:TEOS molar ratio of 50:50 with contribution factor ratio of 1:16 and 1:50 for silica xerogel calcined at 300°C and 500°C respectively. The importance of this research is the DMDMS:TEOS molar ratio plays an important role in determining the hydrophobic properties of thin films.

5.
Materials (Basel) ; 4(2): 448-456, 2011 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-28879999

RESUMO

In this work we investigate the effect of iron oxide embedded in silica matrices as a function of Fe/Si molar ratio and sol pH. To achieve homogeneous dispersion of iron oxide particles, iron nitrate nonahydrate was dissolved in hydrogen peroxide and was mixed with tetraethyl orthosilicate and ethanol in a sol-gel synthesis method. Increasing the calcination temperature led to a reduction in surface area, although the average pore radius remained almost constant at about 10 Å, independent of the Fe/Si molar ratio or sol pH. Hence, the densification of the matrix was accompanied by similar reduction in pore volume. However, calcination at 700 °C resulted in samples with similar surface area though the iron oxide content increased from 5% to 50% Fe/Si molar ratio. As metal oxide particles have lower surface area than polymeric silica structures, these results strongly suggest that the iron oxides opposed the silica structure collapse. The effect of sol pH was found to be less significant than the Fe/Si molar ratio in the formation of molecular sieve structures derived from iron oxide silica.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...