Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
NPJ Microgravity ; 8(1): 7, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365683

RESUMO

In-space cryogenic propulsion will play a vital role in NASA's return to the Moon mission and future mission to Mars. The enabling of in-space cryogenic engines and cryogenic fuel depots for these future manned and robotic space exploration missions begins with the technology development of advanced cryogenic thermal-fluid management systems for the propellant transfer lines and storage system. Before single-phase liquid can flow to the engine or spacecraft receiver tank, the connecting transfer line and storage tank must first be chilled down to cryogenic temperatures. The most direct and simplest method to quench the line and the tank is to use the cold propellant itself that results in the requirement of minimizing propellant consumption during chilldown. In view of the needs stated above, a highly efficient thermal-fluid management technology must be developed to consume the minimum amount of cryogen during chilldown of a transfer line and a storage tank. In this paper, we suggest the use of the cryogenic spray for storage tank chilldown. We have successfully demonstrated its feasibility and high efficiency in a simulated space microgravity condition. In order to maximize the storage tank chilldown efficiency for the least amount of cryogen consumption, the technology adopted included cryogenic spray cooling, Teflon thin-film coating of the simulated tank surface, and spray flow pulsing. The completed flight experiments successfully demonstrated that spray cooling is the most efficient cooling method for the tank chilldown in microgravity. In microgravity, Teflon coating alone can improve the efficiency up to 72% and the efficiency can be improved up to 59% by flow pulsing alone. However, Teflon coating together with flow pulsing was found to substantially enhance the chilldown efficiency in microgravity for up to 113%.

2.
NPJ Microgravity ; 7(1): 21, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103523

RESUMO

The extension of human space exploration from a low earth orbit to a high earth orbit, then to Moon, Mars, and possibly asteroids is NASA's biggest challenge for the new millennium. Integral to this mission is the effective, sufficient, and reliable supply of cryogenic propellant fluids. Therefore, highly energy-efficient thermal-fluid management breakthrough concepts to conserve and minimize the cryogen consumption have become the focus of research and development, especially for the deep space mission to mars. Here we introduce such a concept and demonstrate its feasibility in parabolic flights under a simulated space microgravity condition. We show that by coating the inner surface of a cryogenic propellant transfer pipe with low-thermal conductivity microfilms, the quenching efficiency can be increased up to 176% over that of the traditional bare-surface pipe for the thermal management process of chilling down the transfer pipe. To put this into proper perspective, the much higher efficiency translates into a 65% savings in propellant consumption.

3.
Int J Therm Sci ; 1472020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32913405

RESUMO

This paper reports a heat transfer advancement in the cryogenic quenching process. An experiment was performed to evaluate the enhancement of quenching heat transfer by the use of metal tubes with low thermal conductivity coating layers. Four coating thicknesses with various coolant mass flow rates of liquid nitrogen were investigated. The results indicated that the tube inner surface coating greatly enhanced the quenching efficiency. The quenching efficiency was found to increase with increasing number of coating layers, and the efficiency also increased with decreasing mass flow rates. In general, the efficiencies cover a range between 40.6% and 80%. Comparing to the bare surface case, the percentage increase in the quenching efficiency was the minimum at 4.2% for a single coated layer at the highest flow rate and the maximum of 109.1% for four coated layers at the lowest flow rate. The coated tubes could save up to 53% in the amount of cryogen consumption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA