Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
DNA Res ; 30(1)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36208288

RESUMO

A contiguous assembly of the inbred 'EL10' sugar beet (Beta vulgaris ssp. vulgaris) genome was constructed using PacBio long-read sequencing, BioNano optical mapping, Hi-C scaffolding, and Illumina short-read error correction. The EL10.1 assembly was 540 Mb, of which 96.2% was contained in nine chromosome-sized pseudomolecules with lengths from 52 to 65 Mb, and 31 contigs with a median size of 282 kb that remained unassembled. Gene annotation incorporating RNA-seq data and curated sequences via the MAKER annotation pipeline generated 24,255 gene models. Results indicated that the EL10.1 genome assembly is a contiguous genome assembly highly congruent with the published sugar beet reference genome. Gross duplicate gene analyses of EL10.1 revealed little large-scale intra-genome duplication. Reduced gene copy number for well-annotated gene families relative to other core eudicots was observed, especially for transcription factors. Variation in genome size in B. vulgaris was investigated by flow cytometry among 50 individuals producing estimates from 633 to 875 Mb/1C. Read-depth mapping with short-read whole-genome sequences from other sugar beet germplasm suggested that relatively few regions of the sugar beet genome appeared associated with high-copy number variation.


Assuntos
Beta vulgaris , Humanos , Beta vulgaris/genética , Variações do Número de Cópias de DNA , Cromossomos , Anotação de Sequência Molecular , Açúcares
2.
Mol Plant Pathol ; 22(7): 829-842, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33951264

RESUMO

Sugar beet cultivation is dependent on an effective control of beet necrotic yellow vein virus (BNYVV, family Benyviridae), which causes tremendous economic losses in sugar production. As the virus is transmitted by a soilborne protist, the use of resistant cultivars is currently the only way to control the disease. The Rz2 gene product belongs to a family of proteins conferring resistance towards diverse pathogens in plants. These proteins contain coiled-coil and leucine-rich repeat domains. After artificial inoculation of homozygous Rz2 resistant sugar beet lines, BNYVV and beet soilborne mosaic virus (BSBMV, family Benyviridae) were not detected. Analysis of the expression of Rz2 in naturally infected plants indicated constitutive expression in the root system. In a transient assay, coexpression of Rz2 and the individual BNYVV-encoded proteins revealed that only the combination of Rz2 and triple gene block protein 1 (TGB1) resulted in a hypersensitive reaction (HR)-like response. Furthermore, HR was also triggered by the TGB1 homologues from BSBMV as well as from the more distantly related beet soilborne virus (family Virgaviridae). This is the first report of an R gene providing resistance across different plant virus families.


Assuntos
Beta vulgaris/genética , Resistência à Doença/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Vírus de Plantas/fisiologia , Sequência de Aminoácidos , Beta vulgaris/imunologia , Beta vulgaris/virologia , Morte Celular , Expressão Gênica , Genes Dominantes , Variação Genética , Especificidade de Órgãos , Doenças das Plantas/virologia , Folhas de Planta/imunologia , Folhas de Planta/virologia , Proteínas de Plantas/genética , Domínios Proteicos , Alinhamento de Sequência , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/virologia , Virulência
3.
Theor Appl Genet ; 134(1): 81-93, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32990769

RESUMO

Meiotic recombination plays a crucial role in plant breeding through the creation of new allelic combinations. Therefore, lack of recombination in some genomic regions constitutes a constraint for breeding programmes. In sugar beet, one of the major crops in Europe, recombination occurs mainly in the distal portions of the chromosomes, and so the development of simple approaches to change this pattern is of considerable interest for future breeding and genetics. In the present study, the effect of heat stress on recombination in sugar beet was studied by treating F1 plants at 28 °C/25 °C (day/night) and genotyping the progeny. F1 plants were reciprocally backcrossed allowing the study of male and female meiosis separately. Genotypic data indicated an overall increase in crossover frequency of approximately one extra crossover per meiosis, with an associated increase in pericentromeric recombination under heat treatment. Our data indicate that the changes were mainly induced by alterations in female meiosis only, showing that heterochiasmy in sugar beet is reduced under heat stress. Overall, despite the associated decrease in fertility, these data support the potential use of heat stress to foster recombination in sugar beet breeding programmes.


Assuntos
Beta vulgaris/genética , Troca Genética , Temperatura Alta , Estresse Fisiológico , Beta vulgaris/fisiologia , Genótipo , Meiose , Melhoramento Vegetal
4.
BMC Genomics ; 20(1): 848, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31722668

RESUMO

BACKGROUND: Insertions/deletions (InDels) and more specifically presence/absence variations (PAVs) are pervasive in several species and have strong functional and phenotypic effect by removing or drastically modifying genes. Genotyping of such variants on large panels remains poorly addressed, while necessary for approaches such as association mapping or genomic selection. RESULTS: We have developed, as a proof of concept, a new high-throughput and affordable approach to genotype InDels. We first identified 141,000 InDels by aligning reads from the B73 line against the genome of three temperate maize inbred lines (F2, PH207, and C103) and reciprocally. Next, we designed an Affymetrix® Axiom® array to target these InDels, with a combination of probes selected at breakpoint sites (13%) or within the InDel sequence, either at polymorphic (25%) or non-polymorphic sites (63%) sites. The final array design is composed of 662,772 probes and targets 105,927 InDels, including PAVs ranging from 35 bp to 129kbp. After Affymetrix® quality control, we successfully genotyped 86,648 polymorphic InDels (82% of all InDels interrogated by the array) on 445 maize DNA samples with 422,369 probes. Genotyping InDels using this approach produced a highly reliable dataset, with low genotyping error (~ 3%), high call rate (~ 98%), and high reproducibility (> 95%). This reliability can be further increased by combining genotyping of several probes calling the same InDels (< 0.1% error rate and > 99.9% of call rate for 5 probes). This "proof of concept" tool was used to estimate the kinship matrix between 362 maize lines with 57,824 polymorphic InDels. This InDels kinship matrix was highly correlated with kinship estimated using SNPs from Illumina 50 K SNP arrays. CONCLUSIONS: We efficiently genotyped thousands of small to large InDels on a sizeable number of individuals using a new Affymetrix® Axiom® array. This powerful approach opens the way to studying the contribution of InDels to trait variation and heterosis in maize. The approach is easily extendable to other species and should contribute to decipher the biological impact of InDels at a larger scale.


Assuntos
Genoma de Planta , Técnicas de Genotipagem/métodos , Mutação INDEL , Análise de Sequência com Séries de Oligonucleotídeos , Zea mays/genética , Sequenciamento de Nucleotídeos em Larga Escala , Sondas de Ácido Nucleico
5.
Mol Ecol ; 27(13): 2823-2833, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29772088

RESUMO

Genome-environment association methods aim to detect genetic markers associated with environmental variables. The detected associations are usually analysed separately to identify the genomic regions involved in local adaptation. However, a recent study suggests that single-locus associations can be combined and used in a predictive way to estimate environmental variables for new individuals on the basis of their genotypes. Here, we introduce an original approach to predict the environmental range (values and upper and lower limits) of species genotypes from the genetic markers significantly associated with those environmental variables in an independent set of individuals. We illustrate this approach to predict aridity in a database constituted of 950 individuals of wild beets and 299 individuals of cultivated beets genotyped at 14,409 random single nucleotide polymorphisms (SNPs). We detected 66 alleles associated with aridity and used them to calculate the fraction (I) of aridity-associated alleles in each individual. The fraction I correctly predicted the values of aridity in an independent validation set of wild individuals and was then used to predict aridity in the 299 cultivated individuals. Wild individuals had higher median values and a wider range of values of aridity than the cultivated individuals, suggesting that wild individuals have higher ability to resist to stress-aridity conditions and could be used to improve the resistance of cultivated varieties to aridity.


Assuntos
Adaptação Fisiológica/genética , Interação Gene-Ambiente , Marcadores Genéticos , Genética Populacional , Alelos , Genoma/genética , Genômica , Genótipo , Metagenômica , Modelos Genéticos , Polimorfismo de Nucleotídeo Único/genética
6.
BMC Genomics ; 19(1): 119, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402214

RESUMO

BACKGROUND: Maize is well known for its exceptional structural diversity, including copy number variants (CNVs) and presence/absence variants (PAVs), and there is growing evidence for the role of structural variation in maize adaptation. While PAVs have been described in this important crop species, they have been only scarcely characterized at the sequence level and the extent of presence/absence variation and relative chromosomal landscape of inbred-specific regions remain to be elucidated. RESULTS: De novo genome sequencing of the French F2 maize inbred line revealed 10,044 novel genomic regions larger than 1 kb, making up 88 Mb of DNA, that are present in F2 but not in B73 (PAV). This set of maize PAV sequences allowed us to annotate PAV content and to analyze sequence breakpoints. Using PAV genotyping on a collection of 25 temperate lines, we also analyzed Linkage Disequilibrium in PAVs and flanking regions, and PAV frequencies within maize genetic groups. CONCLUSIONS: We highlight the possible role of MMEJ-type double strand break repair in maize PAV formation and discover 395 new genes with transcriptional support. Pattern of linkage disequilibrium within PAVs strikingly differs from this of flanking regions and is in accordance with the intuition that PAVs may recombine less than other genomic regions. We show that most PAVs are ancient, while some are found only in European Flint material, thus pinpointing structural features that may be at the origin of adaptive traits involved in the success of this material. Characterization of such PAVs will provide useful material for further association genetic studies in European and temperate maize.


Assuntos
Cromossomos de Plantas , Variação Genética , Genoma de Planta , Endogamia , Zea mays/genética , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Elementos de DNA Transponíveis , Evolução Molecular , Genômica/métodos , Desequilíbrio de Ligação , Poaceae/genética , Análise de Sequência de DNA
7.
New Phytol ; 199(1): 252-263, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23551259

RESUMO

Alternative splicing (AS) generates multiple types of mRNA from a single type of pre-mRNA by differential intron splicing. It can result in new protein isoforms or down-regulation of gene expression by transcript decay. The evolutionary conservation of AS events in plants is largely unexplored and only a small number of AS events have been identified as conserved between divergent species. We performed a large-scale analysis of cDNA data from Brassica and Arabidopsis to identify and further characterize conserved AS events. We identified 537 conserved AS events in 485 genes. Alternative donor and acceptor events are significantly overrepresented among conserved events, whereas intron retention and exon skipping events are underrepresented. Conserved AS events are significantly shorter, less likely to be in the 3'UTR, and they are enriched for genes whose products function in the chloroplast. AS modified a functional domain for about half of the genes with conserved events. We further characterized three genes with conserved AS events. This study identifies many AS events that are conserved between Brassica and Arabidopsis, revealing features of conserved AS events. Many of the conserved AS events may have important, but uncharacterized, functions.


Assuntos
Processamento Alternativo , Arabidopsis/genética , Brassica/genética , Evolução Molecular , Regiões 3' não Traduzidas , Cloroplastos/genética , Genes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Precursores de RNA/genética , Alinhamento de Sequência
8.
New Phytol ; 187(2): 355-367, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20487314

RESUMO

SUMMARY: This study sought to determine the main genomic regions that control zinc (Zn) hyperaccumulation in Arabidopsis halleri and to examine genotype x environment effects on phenotypic variance. To do so, quantitative trait loci (QTLs) were mapped using an interspecific A. halleri x Arabidopsis lyrata petraea F(2) population. *The F(2) progeny as well as representatives of the parental populations were cultivated on soils at two different Zn concentrations. A linkage map was constructed using 70 markers. *In both low and high pollution treatments, zinc hyperaccumulation showed high broad-sense heritability (81.9 and 74.7%, respectively). Five significant QTLs were detected: two QTLs specific to the low pollution treatment (chromosomes 1 and 4), and three QTLs identified at both treatments (chromosomes 3, 6 and 7). These QTLs explained 50.1 and 36.5% of the phenotypic variance in low and high pollution treatments, respectively. Two QTLs identified at both treatments (chromosomes 3 and 6) showed significant QTL x environment interactions. *The QTL on chromosome 3 largely colocalized with a major QTL previously identified for Zn and cadmium (Cd) tolerance. This suggests that Zn tolerance and hyperaccumulation share, at least partially, a common genetic basis and may have simultaneously evolved on heavy metal-contaminated soils.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Meio Ambiente , Locos de Características Quantitativas/genética , Zinco/metabolismo , Análise de Variância , Arabidopsis/efeitos dos fármacos , Mapeamento Cromossômico , Segregação de Cromossomos/efeitos dos fármacos , Segregação de Cromossomos/genética , Poluentes Ambientais/farmacologia , Marcadores Genéticos , Característica Quantitativa Herdável
9.
BMC Genomics ; 11: 233, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20380689

RESUMO

BACKGROUND: Despite their monophyletic origin, animal and plant mitochondrial genomes have been described as exhibiting different modes of evolution. Indeed, plant mitochondrial genomes feature a larger size, a lower mutation rate and more rearrangements than their animal counterparts. Gene order variation in animal mitochondrial genomes is often described as being due to translocation and inversion events, but tandem duplication followed by loss has also been proposed as an alternative process. In plant mitochondrial genomes, at the species level, gene shuffling and duplicate occurrence are such that no clear phylogeny has ever been identified, when considering genome structure variation. RESULTS: In this study we analyzed the whole sequences of eight mitochondrial genomes from maize and teosintes in order to comprehend the events that led to their structural features, i.e. the order of genes, tRNAs, rRNAs, ORFs, pseudogenes and non-coding sequences shared by all mitogenomes and duplicate occurrences. We suggest a tandem duplication model similar to the one described in animals, except that some duplicates can remain. This model enabled us to develop a manual method to deal with duplicates, a recurrent problem in rearrangement analyses. The phylogenetic tree exclusively based on rearrangement and duplication events is congruent with the tree based on sequence polymorphism, validating our evolution model. CONCLUSIONS: This study suggests more similarity than usually reported between plant and animal mitochondrial genomes in their mode of evolution. Further work will consist of developing new tools in order to automatically look for signatures of tandem duplication events in other plant mitogenomes and evaluate the occurrence of this process on a larger scale.


Assuntos
Duplicação Gênica , Genoma Mitocondrial , Zea mays/genética , Genoma de Planta , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...