Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38498430

RESUMO

The objective of our work is to create a practical procedure to produce in vitro cell suspensions of O. basilicum and to ascertain the factors that encourage enhanced secondary metabolite production. We investigated the impact of these metabolites on Rhynchophorus ferrugineus's adult and larval target enzymes. The explants were cultivated on Murashige and Skoog (MS) media with 0.1 to 1 mg/L plant growth regulators (PGRs) to create calluses. 2,4-Dichlorophenoxyacetic acid (2,4-D), kinetin, 1-naphthylacetic acid (NAA), and indole-3-butryic acid (IBA) at 0.5, 0.5, 0.1, and 1 mg/L, respectively, with 3% sucrose led to the highest biomass accumulation. In cell suspensions, the total phenolic content (TPC) and total flavonoid content (TFC) were 39.68 and 5.49 mg/g DW, respectively, with abiotic Verticillium dahliae as an activator. Rosmarinic acid, ursolic acid, nepetoidin A and B, salvigenin, and quercetin-3-O-rutinoside as flavonoids and phenolics were analyzed using UPLC-I TQD MS, with the highest concentrations reached after 40 days. The extract demonstrates insecticidal activity against the fourth-instar larvae of R. ferrugineus, with adults at 1197 µg/mL and 12.5 µg/larvae as LC50 and LD50 values. The extract inhibited acetylcholine esterase (AChE), acid phosphatases (ACPs), alkaline phosphatases (ALPs), and gamma-aminobutyric acid-transaminase (GABA-T) in larval tissue in vitro, with IC50 values of 124.2, 149.3, 157.8, and 204.8 µg/mL, and in vivo, with IC50 values of 157.2, 179.4, 185.3, and 241.6 µg/mL, after 24 h. Pure compounds identified the activity of the extract, showing the inhibition of AChE, ACPs, ALPs, and GABA-T with IC50 values ˂ 200 µg/mL (in vitro). The ABMET examination revealed good oral permeability, and docking tests showed that the compounds bind AChE, ACPs, ALPs, and GABA-T. These findings show that a green bioprocessing method such as an O. basilicum cell suspension is a quick and straightforward technique for producing phenolic compounds, and it may be used to develop sustainable bio-insecticides and new green procedures.

2.
Plants (Basel) ; 11(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36365402

RESUMO

Our study's overarching goal was to determine which O. basilicum cell suspensions approach yielded the most insecticidal and R. ferrugineus-inhibitory volatile secondary metabolites. After inoculation with Verticillium dahliae as an activator, the growth kinetics were measured, and the extract was identified using GC-MS. Validation was achieved for the insecticidal efficacy of a volatile extract, the pure phenolic content against larva and adult R. ferrugineus, and the inhibitory effect on proteases (in vivo and in vitro). The volatile extract achieved an LC50 of 1229 µg/mL and an LD50 of 13.8 µg/larva. The LC50 values for ß-bergamotene, α-eudesmol, ß-farnesene, linalool, 1,8-cineole, eugenol, α-guaiene, and ß-caryophyllene were 1294, 1312, 1356, 1398, 1426, 1459, 1491, and 1523 g/mL, respectively. The LD50 activities of α-eudesmol, linalool, 1,8-cineole, eugenol, and nerol were 12.4, 13.7, 13.9, 14.2, and 15.6 g/larva, respectively. Active volatile extract of O. basilicum inhibited trypsin proteinase, elastase, cysteine, overall protease, and metalloprotease activity with IC50 values of 89.4, 101.7, 394.7, 112.4, and 535.2 µg/mL and 178.5, 192.4, 547.3, 208.3, and 924.8 µg/mL, in vitro and in vivo, respectively. There was evidence of action against total proteases (in vitro) with IC50 values of 78.9, 81.2, 88.6, 90.7, 91.5, 97.6, 107.4, and 176.3 µg/mL for ß-bergamotene, α-eudesmol, ß-farnesene, linalool, 1,8-cineole, eugenol, α-guaiene, and ß-caryophyllene, respectively. Total proteases (in vivo) are inhibited by the α-eudesmol, linalool, 1,8-cineole, eugenol, nerol, and (E)-ß-ocimene, with IC50 values of 162.3, 192.7, 193.1, 201.4, 248.6, and 273.2 µg/mL, respectively. ADMET and molecular docking modeling were the only two methods used to conduct in-depth computational analyses of compounds. The study recommended using an efficient cell suspension method to produce a volatile extract rich in useful secondary metabolites that may be utilized as a bio-insecticide.

3.
Plants (Basel) ; 11(8)2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35448815

RESUMO

The purpose of this work was to determine the secondary metabolites generated by O. basilicum cell suspensions, as well as their insecticide and inhibitory activity against R. ferrugineus. The growth kinetics with inoculation Verticillium dahliae were determined and identified using LC-MS. Determination of total phenolic components (TFC), flavonoids (TF), and condensed tannins (TCT) were measured. Insecticidal activity of O. basilicum extract against R. ferrugineus (larva and adult) and proteolytic enzymes activity were assessed (in vitro and in vivo). The O.basilicum extract had an LC50 of 1238 µg/mL and an LD50 of 13.4 µg/larva. The LC50 of chicoric acid, ursolic acid, salvigenin, quercetin-3-O-rutinoside, rosmarinyl glucoside, and nepetoidin B demonstrated activity at an LC50 of 1132, 1167, 1189, 1214, 1275, and 1317 µg/mL, respectively. Chicoric acid, salvigenin, nepetoidin B, and rosmarinic acid demonstrated an LD50 activity of 10.23, 11.4, 11.9, and 12.4 µg/larva, respectively. The active extract of O. basilicum inhibited total protease, trypsin-like serine proteinases, elastase, cysteine, and metalloprotease activity with an IC50 (in vitro) of 119.4, 91, 102.4, 76.4, and 52.4 µg/mL, respectively. In silico studies of compounds were conducted, such as molecular docking and ADMET analysis. The study proposes using an efficient cell suspension technique to produce O. basilicum extract containing active secondary metabolites and accessible using as bio-insecticide.

4.
Insects ; 12(5)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946503

RESUMO

The current study was designed to investigate the insecticide role of volatile constituents produced from cell suspensions of T. vulgaris and O. basilicum against R. ferrugineus. Constituents were extracted from cell suspension after 40 days. Growth kinetics were measured with an inoculation of Verticillium dahliae and identified by GC-MS. Total volatile phenolic constituents were measured. Insecticidal activity against R. ferrugineus (adult) and proteolytic enzyme activity in larvae were assessed. GC-MS showed that the T. vulgaris extract has higher amounts of thymol, p-cymene, γ-terpinene, ß-caryophyllene, and linalool in comparison to the O. basilicum extract, which is rich in estragole, ß-terpineol, (E)-ß-ocimene, 1,8-cineole, germacrene D, and eugenol. The T. vulgaris extract showed an LC50 of 1032 µg/mL, followed by O. basilicum with an LC50 of 1246 µg/mL. The IC50 values against the total proteases were 110.8 and 119.4 µg/mL for T. vulgaris and O. basilicum, respectively. The IC50 for the trypsin-like serine proteinase assessment was 81.6 and 91 µg/mL for T. vulgaris and O. basilicum, respectively. Cysteine, chymotrypsin, and metalloproteinase assessment showed an IC50 above 5000 µg/mL for both extracts. The study is proposed as a potential approach to use T. vulgaris and O. basilicum extract as a bio-insecticide against R. ferrugineus using an accessible and efficient cell suspension technique.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...