Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38585835

RESUMO

In Mycobacterium tuberculosis proteins that are post-translationally modified with Pup, a prokaryotic ubiquitin-like protein, can be degraded by proteasomes. While pupylation is reversible, mechanisms regulating substrate specificity have not been identified. Here, we identify the first depupylation regulators: CoaX, a pseudokinase, and pantothenate, an essential, central metabolite. In a Δ coaX mutant, pantothenate synthesis enzymes were more abundant, including PanB, a substrate of the Pup-proteasome system. Media supplementation with pantothenate decreased PanB levels in a coaX and Pup-proteasome-dependent manner. In vitro , CoaX accelerated depupylation of Pup∼PanB, while addition of pantothenate inhibited this reaction. Collectively, we propose CoaX contributes to proteasomal degradation of PanB by modulating depupylation of Pup∼PanB in response to pantothenate levels. One Sentence Summary: A pseudo-pantothenate kinase regulates proteasomal degradation of a pantothenate synthesis enzyme in M. tuberculosis .

2.
bioRxiv ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38585767

RESUMO

Cytokinins are adenine-based hormones that have been well-characterized in plants but are also made by bacteria, including the human-exclusive pathogen Mycobacterium tuberculosis . In M. tuberculosis , cytokinins activate transcription of an operon that affects the bacterial cell envelope. In plants, cytokinins are broken down by dedicated enzymes called cytokinin oxidases into adenine and various aldehydes. In proteasome degradation-deficient M. tuberculosis , the cytokinin-producing enzyme Log accumulates, resulting in the buildup of at least one cytokinin-associated aldehyde. We therefore hypothesized that M. tuberculosis encodes one or more cytokinin oxidases. Using a homology-based search for homologs of a plant cytokinin oxidase, we identified Rv3719 and a putative cytokinin-specific binding protein, Rv3718c. Deletion of the locus encoding these proteins did not have a measurable effect on in vitro growth. Nonetheless, Rv3718c bound a cytokinin with high specificity. Our data thus support a model whereby cytokinins play one or more roles in mycobacterial physiology. IMPORTANCE: Numerous bacterial species encode cytokinin-producing enzymes, the functions of which are almost completely unknown. This work contributes new knowledge to the cytokinin field for bacteria, and also revealed further conservation of cytokinin-associated proteins between plants and prokaryotes.

3.
EMBO Rep ; 25(2): 459-460, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177921
4.
bioRxiv ; 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37662190

RESUMO

The ALDH2*2 (rs671) allele is one of the most common genetic mutations in humans, yet the positive evolutionary selective pressure to maintain this mutation is unknown, despite its association with adverse health outcomes. ALDH2 is responsible for the detoxification of metabolically produced aldehydes, including lipid-peroxidation end products derived from inflammation. Here, we demonstrate that host-derived aldehydes 4-hydroxynonenal (4HNE), malondialdehyde (MDA), and formaldehyde (FA), all of which are metabolized by ALDH2, are directly toxic to the bacterial pathogens Mycobacterium tuberculosis and Francisella tularensis at physiological levels. We find that Aldh2 expression in macrophages is decreased upon immune stimulation, and that bone marrow-derived macrophages from Aldh2 -/- mice contain elevated aldehydes relative to wild-type mice. Macrophages deficient for Aldh2 exhibited enhanced control of Francisella infection. Finally , mice lacking Aldh2 demonstrated increased resistance to pulmonary infection by M. tuberculosis , including in a hypersusceptible model of tuberculosis, and were also resistant to Francisella infection. We hypothesize that the absence of ALDH2 contributes to the host's ability to control infection by pathogens such as M. tuberculosis and F. tularensis , and that host-derived aldehydes act as antimicrobial factors during intracellular bacterial infections. One sentence summary: Aldehydes produced by host cells contribute to the control of bacterial infections.

5.
EMBO Rep ; 24(10): e58022, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37646308

RESUMO

How does one help a struggling trainee, in or out of their own lab?

6.
mBio ; 14(4): e0036323, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37350636

RESUMO

Mycobacterium tuberculosis is a major human pathogen and the causative agent of tuberculosis disease. M. tuberculosis is able to persist in the face of host-derived antimicrobial molecules nitric oxide (NO) and copper (Cu). However, M. tuberculosis with defective proteasome activity is highly sensitive to NO and Cu, making the proteasome an attractive target for drug development. Previous work linked NO susceptibility with the accumulation of para-hydroxybenzaldehyde (pHBA) in M. tuberculosis mutants with defective proteasomal degradation. In this study, we found that pHBA accumulation was also responsible for Cu sensitivity in these strains. We showed that exogenous addition of pHBA to wild-type M. tuberculosis cultures sensitized bacteria to Cu to a degree similar to that of a proteasomal degradation mutant. We determined that pHBA reduced the production and function of critical Cu resistance proteins of the regulated in copper repressor (RicR) regulon. Furthermore, we extended these Cu-sensitizing effects to an aldehyde that M. tuberculosis may face within the macrophage. Collectively, this study is the first to mechanistically propose how aldehydes can render M. tuberculosis susceptible to an existing host defense and could support a broader role for aldehydes in controlling M. tuberculosis infections. IMPORTANCE M. tuberculosis is a leading cause of death by a single infectious agent, causing 1.5 million deaths annually. An effective vaccine for M. tuberculosis infections is currently lacking, and prior infection does not typically provide robust immunity to subsequent infections. Nonetheless, immunocompetent humans can control M. tuberculosis infections for decades. For these reasons, a clear understanding of how mammalian immunity inhibits mycobacterial growth is warranted. In this study, we show aldehydes can increase M. tuberculosis susceptibility to copper, an established antibacterial metal used by immune cells to control M. tuberculosis and other microbes. Given that activated macrophages produce increased amounts of aldehydes during infection, we propose host-derived aldehydes may help control bacterial infections, making aldehydes a previously unappreciated antimicrobial defense.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Humanos , Mycobacterium tuberculosis/metabolismo , Cobre/farmacologia , Cobre/metabolismo , Aldeídos/metabolismo , Aldeídos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Tuberculose/microbiologia , Antibacterianos/farmacologia , Mamíferos/metabolismo
7.
EMBO Rep ; 24(4): e57041, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36876580

RESUMO

Can we do better when it comes to the "other-race effect"?

8.
J Biol Chem ; 298(10): 102478, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36100038

RESUMO

Mycobacteria use a proteasome system that is similar to a eukaryotic proteasome but do not use ubiquitin to target proteins for degradation. Instead, mycobacteria encode a prokaryotic ubiquitin-like protein (Pup) that posttranslationally modifies proteins to mark them for proteolysis. Pupylation occurs on lysines of targeted proteins and is catalyzed by the ligase PafA. Like ubiquitylation, pupylation can be reversed by the depupylase Dop, which shares high structural similarity with PafA. Unique to Dop near its active site is a disordered loop of approximately 40 amino acids that is highly conserved among diverse dop-containing bacterial genera. To understand the function of this domain, we deleted discrete sequences from the Dop loop and assessed pupylation in mutant strains of Mycobacterium tuberculosis. We determined that various Dop loop mutations resulted in altered pupylome profiles, in particular when mutant dop alleles were overexpressed. Taken together, our data suggest these conserved amino acids play a role in substrate selectivity for Dop.


Assuntos
Proteínas de Bactérias , Mycobacterium tuberculosis , Complexo de Endopeptidases do Proteassoma , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lisina/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinas/metabolismo , Sequência Conservada/genética
9.
EMBO Rep ; 23(10): e56047, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36102812

RESUMO

There are many paths into and through academic science. Heran Darwin describes how she eventually got hooked on research.


Assuntos
Pesquisa , Feminino , Humanos , Ciência
10.
mSphere ; 7(5): e0027422, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-35993699

RESUMO

Mycobacterium tuberculosis possesses a Pup-proteasome system analogous to the eukaryotic ubiquitin-proteasome pathway. We have previously shown that the hexameric mycobacterial proteasome ATPase (Mpa) recruits pupylated protein substrates via interactions between amino-terminal coiled-coils in Mpa monomers and the degradation tag Pup. However, it is unclear how Mpa rings interact with a proteasome due to the presence of a carboxyl-terminal ß-grasp domain unique to Mpa homologues that makes the interaction highly unstable. Here, we describe newly identified critical interactions between Mpa and 20S core proteasomes. Interestingly, the Mpa C-terminal GQYL motif binds the 20S core particle activation pocket differently than the same motif of the ATP-independent proteasome accessory factor PafE. We further found that the ß-hairpin of the Mpa ß-grasp domain interacts variably with the H0 helix on top of the 20S core particle via a series of ionic and hydrogen-bond interactions. Individually mutating several involved residues reduced Mpa-mediated protein degradation both in vitro and in vivo. IMPORTANCE The Pup-proteasome system in Mycobacterium tuberculosis is critical for this species to cause lethal infections in mice. Investigating the molecular mechanism of how the Mpa ATPase recruits and unfolds pupylated substrates to the 20S proteasomal core particle for degradation will be essential to fully understand how degradation is regulated, and the structural information we report may be useful for the development of new tuberculosis chemotherapies.


Assuntos
Mycobacterium tuberculosis , Animais , Camundongos , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Hidrogênio/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinas/genética , Ubiquitinas/química , Ubiquitinas/metabolismo
11.
EMBO Rep ; 23(6): e55283, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35507730

RESUMO

Research in the life sciences is an inherently wasteful endeavor. Could we all do better to reduce waste by our laboratories?


Assuntos
Gerenciamento de Resíduos , Laboratórios
12.
Open Biol ; 12(4): 220010, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35414258

RESUMO

There are many reactive intermediates found in metabolic pathways. Could these potentially toxic molecules be exploited for an organism's benefit? We propose that during certain microbial infections, the production of inherently reactive aldehydes by an infected host is a previously unappreciated innate immune defence mechanism. While there has been a significant focus on the effects of aldehydes on mammalian physiology, the idea that they might be exploited or purposefully induced to kill pathogens is new. Given that aldehydes are made as parts of metabolic programmes that accompany immune cell activation by the cytokine interferon-gamma (IFN-γ) during infections, we hypothesize that aldehydes are among the arsenal of IFN-γ-inducible effectors needed for pathogen control.


Assuntos
Anti-Infecciosos , Macrófagos , Aldeídos/metabolismo , Aldeídos/farmacologia , Animais , Anti-Infecciosos/metabolismo , Citocinas/metabolismo , Interferon gama/metabolismo , Macrófagos/metabolismo , Mamíferos , Óxido Nítrico/metabolismo
13.
EMBO Rep ; 23(5): e54958, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35301788

RESUMO

As COVID wanes and scientific conferences come back, some advice on how to deal with, organise and enjoy sharing science at meetings.


Assuntos
COVID-19 , COVID-19/epidemiologia , Humanos
14.
EMBO Rep ; 23(2): e54435, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34927345

RESUMO

PIs do not need to stay away from bench work; in fact, they are often overall the best and most experienced experimentalists in the lab.

15.
Chembiochem ; 22(21): 3082-3089, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34387015

RESUMO

Tuberculosis is a global health problem caused by infection with the Mycobacterium tuberculosis (Mtb) bacteria. Although antibiotic treatment has dramatically reduced the impact of tuberculosis on the population, the existence and spreading of drug resistant strains urgently demands the development of new drugs that target Mtb in a different manner than currently used antibiotics. The prokaryotic ubiquitin-like protein (Pup) proteasome system is an attractive target for new drug development as it is unique to Mtb and related bacterial genera. Using a Pup-based fluorogenic substrate, we screened for inhibitors of Dop, the Mtb depupylating protease, and identified I-OMe-Tyrphostin AG538 (1) and Tyrphostin AG538 (2). The hits were validated and determined to be fast-reversible, non-ATP competitive inhibitors. We synthesized >25 analogs of 1 and 2 and show that several of the synthesized compounds also inhibit the depupylation actions of Dop on native substrate, FabD-Pup. Importantly, the pupylation activity of PafA, the sole Pup ligase in Mtb, was also inhibited by some of these compounds.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Desenvolvimento de Medicamentos , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Tirfostinas/farmacologia , Ubiquitinas/antagonistas & inibidores , Antibacterianos/síntese química , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/enzimologia , Relação Estrutura-Atividade , Tirfostinas/síntese química , Tirfostinas/química , Ubiquitinas/metabolismo
16.
EMBO Rep ; 22(9): e53619, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34322986

RESUMO

Mycobacterium tuberculosis is a fascinating object of study: it is one of the deadliest pathogens of humankind, able to fend off persistent attacks by the immune system or drugs.


Assuntos
Mel , Mustelidae , Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose , Animais , Mycobacterium tuberculosis/genética , Tuberculose/epidemiologia
17.
Elife ; 102021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34151776

RESUMO

Type I interferons (IFNs) are essential for anti-viral immunity, but often impair protective immune responses during bacterial infections. An important question is how type I IFNs are strongly induced during viral infections, and yet are appropriately restrained during bacterial infections. The Super susceptibility to tuberculosis 1 (Sst1) locus in mice confers resistance to diverse bacterial infections. Here we provide evidence that Sp140 is a gene encoded within the Sst1 locus that represses type I IFN transcription during bacterial infections. We generated Sp140-/- mice and found that they are susceptible to infection by Legionella pneumophila and Mycobacterium tuberculosis. Susceptibility of Sp140-/- mice to bacterial infection was rescued by crosses to mice lacking the type I IFN receptor (Ifnar-/-). Our results implicate Sp140 as an important negative regulator of type I IFNs that is essential for resistance to bacterial infections.


Assuntos
Infecções Bacterianas/imunologia , Interferon Tipo I/metabolismo , Fatores de Transcrição/metabolismo , Alelos , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Interferon Tipo I/genética , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Knockout , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Mycobacterium tuberculosis , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Organismos Livres de Patógenos Específicos , Fatores de Transcrição/genética , Fator de Necrose Tumoral alfa/farmacologia
18.
J Med Chem ; 64(9): 6262-6272, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33949190

RESUMO

Treatment of tuberculosis (TB) currently takes at least 6 months. Latent Mycobacterium tuberculosis (Mtb) is phenotypically tolerant to most anti-TB drugs. A key hypothesis is that drugs that kill nonreplicating (NR) Mtb may shorten treatment when used in combination with conventional drugs. The Mtb proteasome (Mtb20S) could be such a target because its pharmacological inhibition kills NR Mtb and its genetic deletion renders Mtb unable to persist in mice. Here, we report a series of macrocyclic peptides that potently and selectively target the Mtb20S over human proteasomes, including macrocycle 6. The cocrystal structure of macrocycle 6 with Mtb20S revealed structural bases for the species selectivity. Inhibition of 20S within Mtb by 6 dose dependently led to the accumulation of Pup-tagged GFP that is degradable but resistant to depupylation and death of nonreplicating Mtb under nitrosative stress. These results suggest that compounds of this class have the potential to develop as anti-TB therapeutics.


Assuntos
Mycobacterium tuberculosis/enzimologia , Peptídeos Cíclicos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Desenho de Fármacos , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Peptídeos Cíclicos/química , Relação Estrutura-Atividade
19.
J Biol Chem ; 296: 100713, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33930464

RESUMO

Although many bacterial species do not possess proteasome systems, the actinobacteria, including the human pathogen Mycobacterium tuberculosis, use proteasome systems for targeted protein removal. Previous structural analyses of the mycobacterial proteasome ATPase Mpa revealed a general structural conservation with the archaeal proteasome-activating nucleotidase and eukaryotic proteasomal Rpt1-6 ATPases, such as the N-terminal coiled-coil domain, oligosaccharide-/oligonucleotide-binding domain, and ATPase domain. However, Mpa has a unique ß-grasp domain that in the ADP-bound crystal structure appears to interfere with the docking to the 20S proteasome core particle (CP). Thus, it is unclear how Mpa binds to proteasome CPs. In this report, we show by cryo-EM that the Mpa hexamer in the presence of a degradation substrate and ATP forms a gapped ring, with two of its six ATPase domains being highly flexible. We found that the linkers between the oligonucleotide-binding and ATPase domains undergo conformational changes that are important for function, revealing a previously unappreciated role of the linker region in ATP hydrolysis-driven protein unfolding. We propose that this gapped ring configuration is an intermediate state that helps rearrange its ß-grasp domains and activating C termini to facilitate engagement with proteasome CPs. This work provides new insights into the crucial process of how an ATPase interacts with a bacterial proteasome protease.


Assuntos
Adenosina Trifosfatases/metabolismo , Mycobacterium tuberculosis/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Adenosina Trifosfatases/química , Modelos Moleculares , Domínios Proteicos , Multimerização Proteica , Estrutura Quaternária de Proteína
20.
EMBO Rep ; 22(6): e52874, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33844414

RESUMO

There is no perfect recipe to balance work and life in academic research. Everyone has to find their own optimal balance to derive fulfilment from life and work.


Assuntos
Equilíbrio Trabalho-Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...