Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(9)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37761570

RESUMO

The majority of the recent research on text similarity has been focused on machine learning strategies to combat the problem in the educational environment. When the originality of an idea is copied, it increases the difficulty of using a plagiarism detection system in practice, and the system fails. In cases like active-to-passive conversion, phrase structure changes, synonym substitution, and sentence reordering, the present approaches may not be adequate for plagiarism detection. In this article, semantic extraction and the quantum genetic algorithm (QGA) are integrated in a unified framework to identify idea plagiarism with the aim of enhancing the performance of existing methods in terms of detection accuracy and computational time. Semantic similarity measures, which use the WordNet database to extract semantic information, are used to capture a document's idea. In addition, the QGA is adapted to identify the interconnected, cohesive sentences that effectively convey the source document's main idea. QGAs are formulated using the quantum computing paradigm based on qubits and the superposition of states. By using the qubit chromosome as a representation rather than the more traditional binary, numeric, or symbolic representations, the QGA is able to express a linear superposition of solutions with the aim of increasing gene diversity. Due to its fast convergence and strong global search capacity, the QGA is well suited for a parallel structure. The proposed model has been assessed using a PAN 13-14 dataset, and the result indicates the model's ability to achieve significant detection improvement over some of the compared models. The recommended PD model achieves an approximately 20%, 15%, and 10% increase for TPR, PPV, and F-Score compared to GA and hierarchical GA (HGA)-based PD methods, respectively. Furthermore, the accuracy rate rises by approximately 10-15% for each increase in the number of samples in the dataset.

2.
Bioengineering (Basel) ; 10(7)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37508846

RESUMO

Segmenting brain tumors in 3D magnetic resonance imaging (3D-MRI) accurately is critical for easing the diagnostic and treatment processes. In the field of energy functional theory-based methods for image segmentation and analysis, level set methods have emerged as a potent computational approach that has greatly aided in the advancement of the geometric active contour model. An important factor in reducing segmentation error and the number of required iterations when using the level set technique is the choice of the initial contour points, both of which are important when dealing with the wide range of sizes, shapes, and structures that brain tumors may take. To define the velocity function, conventional methods simply use the image gradient, edge strength, and region intensity. This article suggests a clustering method influenced by the Quantum Inspired Dragonfly Algorithm (QDA), a metaheuristic optimizer inspired by the swarming behaviors of dragonflies, to accurately extract initial contour points. The proposed model employs a quantum-inspired computing paradigm to stabilize the trade-off between exploitation and exploration, thereby compensating for any shortcomings of the conventional DA-based clustering method, such as slow convergence or falling into a local optimum. To begin, the quantum rotation gate concept can be used to relocate a colony of agents to a location where they can better achieve the optimum value. The main technique is then given a robust local search capacity by adopting a mutation procedure to enhance the swarm's mutation and realize its variety. After a preliminary phase in which the cranium is disembodied from the brain, tumor contours (edges) are determined with the help of QDA. An initial contour for the MRI series will be derived from these extracted edges. The final step is to use a level set segmentation technique to isolate the tumor area across all volume segments. When applied to 3D-MRI images from the BraTS' 2019 dataset, the proposed technique outperformed state-of-the-art approaches to brain tumor segmentation, as shown by the obtained results.

3.
Biomimetics (Basel) ; 8(2)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37218783

RESUMO

To combat malicious domains, which serve as a key platform for a wide range of attacks, domain name service (DNS) data provide rich traces of Internet activities and are a powerful resource. This paper presents new research that proposes a model for finding malicious domains by passively analyzing DNS data. The proposed model builds a real-time, accurate, middleweight, and fast classifier by combining a genetic algorithm for selecting DNS data features with a two-step quantum ant colony optimization (QABC) algorithm for classification. The modified two-step QABC classifier uses K-means instead of random initialization to place food sources. In order to overcome ABCs poor exploitation abilities and its convergence speed, this paper utilizes the metaheuristic QABC algorithm for global optimization problems inspired by quantum physics concepts. The use of the Hadoop framework and a hybrid machine learning approach (K-mean and QABC) to deal with the large size of uniform resource locator (URL) data is one of the main contributions of this paper. The major point is that blacklists, heavyweight classifiers (those that use more features), and lightweight classifiers (those that use fewer features and consume the features from the browser) may all be improved with the use of the suggested machine learning method. The results showed that the suggested model could work with more than 96.6% accuracy for more than 10 million query-answer pairs.

4.
J Imaging ; 9(4)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37103230

RESUMO

Recently, signature verification systems have been widely adopted for verifying individuals based on their handwritten signatures, especially in forensic and commercial transactions. Generally, feature extraction and classification tremendously impact the accuracy of system authentication. Feature extraction is challenging for signature verification systems due to the diverse forms of signatures and sample circumstances. Current signature verification techniques demonstrate promising results in identifying genuine and forged signatures. However, the overall performance of skilled forgery detection remains rigid to deliver high contentment. Furthermore, most of the current signature verification techniques demand a large number of learning samples to increase verification accuracy. This is the primary disadvantage of using deep learning, as the figure of signature samples is mainly restricted to the functional application of the signature verification system. In addition, the system inputs are scanned signatures that comprise noisy pixels, a complicated background, blurriness, and contrast decay. The main challenge has been attaining a balance between noise and data loss, since some essential information is lost during preprocessing, probably influencing the subsequent stages of the system. This paper tackles the aforementioned issues by presenting four main steps: preprocessing, multifeature fusion, discriminant feature selection using a genetic algorithm based on one class support vector machine (OCSVM-GA), and a one-class learning strategy to address imbalanced signature data in the practical application of a signature verification system. The suggested method employs three databases of signatures: SID-Arabic handwritten signatures, CEDAR, and UTSIG. Experimental results depict that the proposed approach outperforms current systems in terms of false acceptance rate (FAR), false rejection rate (FRR), and equal error rate (EER).

5.
Entropy (Basel) ; 22(12)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33333717

RESUMO

This paper applies the entropy-based fractal indexing scheme that enables the grid environment for fast indexing and querying. It addresses the issue of fault tolerance and load balancing-based fractal management to make computational grids more effective and reliable. A fractal dimension of a cloud of points gives an estimate of the intrinsic dimensionality of the data in that space. The main drawback of this technique is the long computing time. The main contribution of the suggested work is to investigate the effect of fractal transform by adding R-tree index structure-based entropy to existing grid computing models to obtain a balanced infrastructure with minimal fault. In this regard, the presented work is going to extend the commonly scheduling algorithms that are built based on the physical grid structure to a reduced logical network. The objective of this logical network is to reduce the searching in the grid paths according to arrival time rate and path's bandwidth with respect to load balance and fault tolerance, respectively. Furthermore, an optimization searching technique is utilized to enhance the grid performance by investigating the optimum number of nodes extracted from the logical grid. The experimental results indicated that the proposed model has better execution time, throughput, makespan, latency, load balancing, and success rate.

6.
Entropy (Basel) ; 22(9)2020 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-33286760

RESUMO

Forecasting stock prices plays an important role in setting a trading strategy or determining the appropriate timing for buying or selling a stock. The use of technical analysis for financial forecasting has been successfully employed by many researchers. The existing qualitative based methods developed based on fuzzy reasoning techniques cannot describe the data comprehensively, which has greatly limited the objectivity of fuzzy time series in uncertain data forecasting. Extended fuzzy sets (e.g., fuzzy probabilistic set) study the fuzziness of the membership grade to a concept. The cloud model, based on probability measure space, automatically produces random membership grades of a concept through a cloud generator. In this paper, a cloud model-based approach was proposed to confirm accurate stock based on Japanese candlestick. By incorporating probability statistics and fuzzy set theories, the cloud model can aid the required transformation between the qualitative concepts and quantitative data. The degree of certainty associated with candlestick patterns can be calculated through repeated assessments by employing the normal cloud model. The hybrid weighting method comprising the fuzzy time series, and Heikin-Ashi candlestick was employed for determining the weights of the indicators in the multi-criteria decision-making process. Fuzzy membership functions are constructed by the cloud model to deal effectively with uncertainty and vagueness of the stock historical data with the aim to predict the next open, high, low, and close prices for the stock. The experimental results prove the feasibility and high forecasting accuracy of the proposed model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...