Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 269(Pt 2): 132186, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723815

RESUMO

Trigonella foenum-graecum, known as fenugreek, belongs to the leguminous family of wild growth in Western Asia, Europe, the Mediterranean, and Asia; its ripe seeds contain a pool of bioactive substances with great potential in the food industry and medicine. In this study, fenugreek seed mucilage (FSM) was extracted and characterized in its structural properties by X-ray diffraction, nuclear magnetic resonance, and high-performance liquid chromatography. Then, the applicability of FSM as an antimicrobial agent was demonstrated via the development of novel, active, edible FSM-based biofilms containing carboxymethyl cellulose and rosemary essential oil (REO). Incorporating REO in the biofilms brought about specific changes in Fourier-transform infrared spectra, affecting thermal degradation behavior. Scanning electron microscopy and atomic force microscopy morphography showed an even distribution of REO and smoother surfaces in the loaded films. Besides, the solubility tests evidenced a reduction in water solubility with increasing REO concentration from 1 to 3 wt%. The biological assay evidenced the antimicrobial activity of REO-loaded biofilms against Staphylococcus aureus and Escherichia coli. Finally, whole apples were dip-coated with FSM-based solutions to showcase future edible systems. The REO-loaded biofilms extended the shelf life of apples to 30 days, demonstrating their potential for sustainable and active coatings.


Assuntos
Anti-Infecciosos , Filmes Comestíveis , Frutas , Sementes , Trigonella , Trigonella/química , Frutas/química , Sementes/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Mucilagem Vegetal/química , Biofilmes/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Fenômenos Químicos , Solubilidade , Armazenamento de Alimentos , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
2.
Environ Sci Pollut Res Int ; 26(21): 21201-21215, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31115820

RESUMO

One of the biggest challenges of using single-chamber microbial fuel cells (MFCs) that utilize proton-exchange membrane (PEM) air cathode for bioenergy recovery from recalcitrant organic compounds present in wastewater is mainly attributed to their high internal resistance in the anodic chamber of the single microbial fuel cell (MFC) configurations. The high internal resistance is due to the small surface area of the anode and cathode electrodes following membrane biofouling and pH splitting conditions as well as substrate and oxygen crossover through the membrane pores by diffusion. To address this issue, the fabrication of new PEM air-cathode single-chamber MFC configuration was investigated with inner channel flow open assembled with double PEM air cathodes (two oxygen reduction activity zones) coupled with spiral-anode MFC (2MA-CsS-AMFC). The effect of various proton-exchange membranes (PEMs), including Nafion 117 (N-117), Nafion 115 (N-115), and Nafion 212 (N-212) with respective thicknesses of 183, 127, and 50.08 µ, was separately incorporated into carbon cloth as PEM air-cathode electrode to evaluate their influences on the performance of the 2MA-CsS-AMFC configuration operated in fed-batch mode, while Azorubine dye was selected as the recalcitrant organic compound. The fed-batch test results showed that the 2MA-CsS-AMFC configuration with PEM N-115 operated at Azorubine dye concentration of 300 mg L-1 produced the highest power density of 1022.5 mW m-2 and open-circuit voltage (OCV) of 1.20 V coupled with enhanced dye removal (4.77 mg L h-1) compared to 2MA-CsS-AMFCs with PEMs N-117 and N-212 and those in previously published data. Interestingly, PEM 115 showed remarkable reduction in biofouling and pH splitting. Apart from that, mass transfer coefficient of PEM N-117 was the most permeable to oxygen (KO = 1.72 × 10-4 cm s-1) and PEM N-212 was the most permeable membrane to Azorubine (KA = 7.52 × 10-8 cm s-1), while PEM N-115 was the least permeable to both oxygen (KO = 1.54 × 10-4) and Azorubine (KA = 7.70 × 10-10). The results demonstrated that the 2MA-CsS-AMFC could be promising configuration for bioenergy recovery from wastewater treatment under various PEMs, while application of PEM N-115 produced the best performance compared to PEMs N-212 and N-117 and those in previous studies of membrane/membrane-less air-cathode single-chamber MFCs that consumed dye wastewater.


Assuntos
Fontes de Energia Bioelétrica , Naftalenossulfonatos/química , Eliminação de Resíduos Líquidos/métodos , Carbono , Eletricidade , Eletrodos , Polímeros de Fluorcarboneto , Membranas Artificiais , Oxigênio/química , Prótons , Águas Residuárias/química
3.
Environ Technol ; 39(9): 1188-1197, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28443368

RESUMO

Improving wastewater treatment process and water desalination are two important solutions for increasing the available supply of fresh water. Microbial desalination cells (MDCs) with common electrolytes display relatively low organic matter removal and high cost. In this study, sewage sludge was used as the substrate in the Microbial desalination cell (MDC) under three different initial salt concentrations (5, 20 and 35 g.L-1) and the maximum salt removal rates of 50.6%, 64% and 69.6% were obtained under batch condition, respectively. The MDC also produced the maximum power density of 47.1 W m-3 and the averaged chemical oxygen demand (COD) removal of 58.2 ± 0.89% when the initial COD was 6610 ± 83 mg L-1. Employing treated sludge as catholyte enhanced COD removal and power density to 87.3% and 54.4 W m-3, respectively, with counterbalancing pH variation in treated effluent. These promising results showed, for the first time, that the excess sewage sludge obtained from biological wastewater treatment plants could be successfully used as anolyte and catholyte in MDC, achieving organic matter biodegradation along with salt removal and energy production. In addition, using treated sludge as catholyte will improve the performance of MDC and introduce a more effective method for both sludge treatment and desalination.


Assuntos
Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Esgotos , Fontes de Energia Bioelétrica , Eletrodos , Purificação da Água
4.
Artigo em Inglês | MEDLINE | ID: mdl-28758874

RESUMO

The objective of this study was to investigate the power generation in a dual-chamber microbial fuel cell (MFC). As one of the effective parameters, glucose concentration was studied in the range of 100-1000 mg/L. At the optimum concentration of 500 mg/L of glucose, maximum power generation was 186 mW/m2. As an alternative, sulfide was used as an electron donor and maximum power output was 401 mW/m2 at the concentration of 100 mg/L; which was more than twice of power produced using glucose. Moreover, sulfide removal efficiencies of 70%, 66%, 60%, and 64% were obtained when initial sulfide concentrations of 10, 20, 80, and 100 mg/L were used, respectively.


Assuntos
Fontes de Energia Bioelétrica , Eletricidade , Elétrons , Glucose/química , Sulfetos/química , Eletrodos , Transporte de Elétrons , Transferência de Energia , Desenho de Equipamento
6.
Environ Sci Pollut Res Int ; 24(23): 19444-19457, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28580546

RESUMO

This work studied the performance of a laboratory-scale microbial fuel cell (MFC) using a bioanode that consisted of treated clinoptilolite fine powder coated onto graphite felt (TC-MGF). The results were compared with another similar MFC that used a bare graphite felt (BGF) bioanode. The anode surfaces provided active sites for the adhesion of the bacterial consortium (NAR-2) and the biodegradation of mono azo dye C.I. Acid Red 27. As a result, bioelectricity was generated in both MFCs. A 98% decolourisation rate was achieved using the TC-MGF bioanode under a fed-batch operation mode. Maximum power densities for BGF and TC-MGF bioanodes were 458.8 ± 5.0 and 940.3 ± 4.2 mW m-2, respectively. GC-MS analyses showed that the dye was readily degraded in the presence of the TC-MGF bioanode. The MFC using the TC-MGF bioanode showed a stable biofilm with no biomass leached out for more than 300 h operation. In general, MFC performance was substantially improved by the fabricated TC-MGF bioanode. It was also found that the TC-MGF bioanode with the stable biofilm presented the nature of exopolysaccharide (EPS) structure, which is suitable for the biodegradation of the azo dye. In fact, the EPS facilitated the shuttling of electrons to the bioanode for the generation of bioelectricity.


Assuntos
Corante Amaranto/isolamento & purificação , Biodegradação Ambiental , Fontes de Energia Bioelétrica/microbiologia , Eletrodos/microbiologia , Grafite/química , Zeolitas/química , Corante Amaranto/metabolismo , Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento
7.
Environ Sci Pollut Res Int ; 23(4): 3358-64, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26490910

RESUMO

Microbial fuel cells (MFCs) represent one of the most attractive and eco-friendly technologies that convert chemical bond energy derived from organic matter into electrical power by microbial catabolic activity. This paper presents the use of a H-type MFC involving a novel NAR-2 bacterial consortium consisting of Citrobacter sp. A1, Enterobacter sp. L17 and Enterococcus sp. C1 to produce electricity whilst simultaneously decolourising acid red 27 (AR27) as a model dye, which is also known as amaranth. In this setup, the dye AR27 is mixed with modified P5 medium (2.5 g/L glucose and 5.0 g/L nutrient broth) in the anode compartment, whilst phosphate buffer solution (PBS) pH 7 serves as a catholyte in the cathode compartment. After several electrochemical analyses, the open circuit voltage (OCV) for 0.3 g/L AR27 with 24-h retention time at 30 °C was recorded as 0.950 V, whereas (93%) decolourisation was achieved in 220-min operation. The maximum power density was reached after 48 h of operation with an external load of 300 Ω. Scanning electron microscopy (SEM) analysis revealed the surface morphology of the anode and the bacterial adhesion onto the electrode surface. The results of this study indicate that the decolourisation of AR27 dye and electrical power generation was successfully achieved in a MFC operated by a bacterial consortium. The consortium of bacteria was able to utilise AR27 in a short retention time as an electron acceptor and to shuttle the electrons to the anode surface for bioelectricity generation.


Assuntos
Compostos Azo/análise , Bactérias/metabolismo , Fontes de Energia Bioelétrica/microbiologia , Corante Amaranto , Compostos Azo/metabolismo , Bactérias/química , Bactérias/genética , Bactérias/isolamento & purificação , Aderência Bacteriana , Biodegradação Ambiental , Eletricidade , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...