Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(23): 10619-10633, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38805642

RESUMO

The present work evaluates the water oxidation catalytic activity of a Mn-based metal-organic framework (MOF), which we envisioned to reduce the oxygen evolution reaction (OER) overpotential because of its high electrical conductivity, facilitated by solvent-encapsulated structural features. The presence of Mn centers induces interesting magnetic features in the MOF, which exhibits impressive cryogenic magnetic refrigeration with a ΔSM value of 29.94 J kg-1 K-1 for a field change of ΔH = 5T at 2.3 K. To the best of our knowledge, the ΔSM value of the current system ranked the highest position among the published examples. The crystal structure aligns perfectly with the thematic expectations and features as many as ten metal-coordinated water molecules, forming an extensive web of a hydrogen-bonded network while facing toward the porous channel filled with another set of much-anticipated entrapped lattice water molecules. Such structural features are expected to manifest high proton conductivity, and detailed investigation indeed yields the best value for the system at 1.57 × 10-4 S/cm at 95% humidity and 85 °C. In order to evaluate the thematic notion of a one-to-one relationship between OER and improved electrical conductivity, extensive electrocatalytic water splitting (WS) investigations were carried out. The final results show highly encouraging WS ability of the Mn-MOF, showing the electrocatalytic surface area value of the active species as 0.0686 F/g with a turnover frequency value of 0.043 [(mol. O2) (mol. Mn-MOF)-1 s-1]. Another fascinating aspect of the current communication is the excellent synergy observed between the experimental WS outcomes and the corresponding theoretical data calculated using density functional theory (DFT). Consequently, a plausible mechanism of the overall OER and the role of the Mn-MOF as a water oxidation catalyst, along with the importance of water molecules, have also been derived from the theoretical calculations using DFT.

2.
Front Nutr ; 11: 1330662, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38501069

RESUMO

Introduction: The present research focuses on the chapatti making quality of high-yielding white maize hybrids compared to available low-yielding local yellow and white landraces in India. Materials and methods: In this study, the top nine superior hybrids were selected for testing the physical properties of the maize kernels, proximate composition of flours and chapattis, physical parameters of chapatti, textural properties, sensory evaluation of chapattis and pasting properties of maize flour. Results and discussion: The results revealed the superiority of white maize hybrids (WMH), viz., WHM 1, WHM 2, and WHM 8 over the local yellow and white landraces for most of the parameters studied. In sensory analysis, though, the yellow landrace was considered superior by the panellists in terms of colour but the white maize hybrids outperformed in overall sensory analysis and were more acceptable than the yellow and white maize landraces. These high yielding white maize hybrids with good consumer acceptance may cater for the needs of rural and tribal populations in India who prefer white maize as a staple food.

3.
Chemistry ; 30(16): e202304009, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38179806

RESUMO

The thermal 6π-electrocyclization of hexatriene typically delivers 1,3-cyclohexadiene (1,3-CHD). However, there is only limited success in directly synthesizing 1,4-cyclohexadiene (1,4-CHD) using such an approach, probably due to the difficulty in realizing thermally-forbidden 1,3-hydride shift after electrocyclic ring closure. The present study shows that by heating (2E,4E,6E)-hexatrienes bearing ester or ketone substituents at the C1-position in a mixture of toluene/MeOH or EtOH (2 : 1) solvents at 90-100 °C, 1,4-CHDs can be selectively synthesized. This is achieved through a torquoselective disrotatory 6π-electrocyclic ring closure followed by a proton-transfer process. The success of this method depends on the polar protic solvent-assisted intramolecular proton transfer from 1,3-CHD to 1,4-CHD, which has been confirmed by deuterium-labeling experiments. There are no reports to date for such a solvent-assisted isomerization. Density functional theory (DFT) studies have suggested that forming 1,3-CHD and subsequent isomerization is a thermodynamically feasible process, regardless of the functional groups involved. Two possible successive polar solvent-assisted proton-transfer pathways have been identified for isomerization.

4.
Chemistry ; 29(63): e202302335, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37555389

RESUMO

The geometrical regioselective E→Z isomerization of a conjugated alkene under thermal activation pose a challenge due to microscopic reversibility. Herein we report that such reversibility issues can be circumvented by integrating E→Z isomerization with subsequent cyclization cascade, particularly in the absence of commonly employed light, acids, or metal-catalysts. Thus, linearly conjugated dienals in a mixture of toluene-alcohol (2 : 1) solvents or only with alcohol at 60-70 °C can be converted to γ-alkoxybutenolides in moderate to good yields. The intermediary 2Z,4E-isomer can be isolated, which includes the first example of isolating the regioselective isomerization product under thermal conditions. Density functional theory (DFT) studies have been employed to shed light on the feasibility of geometrical alkene isomerization and ensuing cascade sequences. It has been observed that the regioselective 2E,4E→2Z,4E isomerization of dienal is a thermodynamically facile (ΔG <0) process. Structural elucidation further reveals that the presence of a certain charge transfer and a non-covalent interaction may be the primary reasons for the enhanced stability of the 2Z,4E-isomer. The thermodynamic plausibility of the subsequent cascade reaction from the Z-isomer to the anticipated product in the presence of a polar protic solvent (here MeOH) is also explicated. Out of the two probable pathways, the "hemiacetal pathway" involving a relay proton transfer is kinetically more feasible due to the diminished activation barrier than the "conjugate addition pathway".

5.
Langmuir ; 39(11): 4071-4081, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36905363

RESUMO

Exploring a covalent organic framework (COF) material as an efficient metal-free photocatalyst and as an adsorbent for the removal of pollutants from contaminated water is very challenging in the context of sustainable chemistry. Herein, we report a new porous crystalline COF, C6-TRZ-TPA COF, via segregation of donor-acceptor moieties through the extended Schiff base condensation between tris(4-formylphenyl)amine and 4,4',4″-(1,3,5-triazine-2,4,6-triyl)trianiline. This COF displayed a Brunauer-Emmett-Teller (BET) surface area of 1058 m2 g-1 with a pore volume of 0.73 cc g-1. Again, extended π-conjugation, the presence of heteroatoms throughout the framework, and a narrow band gap of 2.2 eV, all these features collectively work for the environmental remediation in two different perspectives: it could harness solar energy for environmental clean-up, where the COF has been explored as a robust metal-free photocatalyst for wastewater treatment and as an adsorbent for iodine capture. In our endeavor of wastewater treatment, we have conducted the photodegradation of rose bengal (RB) and methylene blue (MB) as model pollutants since these are extremely toxic, are health hazard, and bioaccumulative in nature. The catalyst C6-TRZ-TPA COF showed a very high catalytic efficiency of 99% towards the degradation of 250 parts per million (ppm) of RB solution in 80 min under visible light irradiation with the rate constant of 0.05 min-1. Further, C6-TRZ-TPA COF is found to be an excellent adsorbent as it efficiently adsorbed radioactive iodine from its solution as well as from the vapor phase. The material exhibits a very rapid iodine capturing tendency with an outstanding iodine vapor uptake capacity of 4832 mg g-1.

6.
Inorg Chem ; 62(8): 3485-3497, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36780226

RESUMO

Photoinduced electricity and proton conductivity led fuel cells have emerged, inter alia, as highly promising systems for unconventional energy harvesting. Notwithstanding their individual presence with widely acclaimed results, an integrating system with mutually inclusive manifestation of both features has hitherto not been reported in the literature. To achieve this objective, our approach was to design a ligand system incorporating prerequisite features of both systems, like extended conjugation instigating photophysical activity and functional groups facilitating ionic conduction. As such, we report herein the design, synthesis, and characterization of a pyridyl-pyrazole-based silver compound that exhibits an excellent photocurrent generation and very high proton conductivity. The X-ray single-crystal structure of the Ag complex fully supports our notion, showing extensive π-π conjugated aromatic rings with a protruding free sulfonic group, facing toward solvent-filled channels with numerous supramolecular interactions. The nanoscopic silver metallogel induces semiconductive features in the system which ultimately result in photoresponse behavior in terms of photocurrent generation with an whopping photocurrent gain (Ion/Ioff) of 21.2. To complete the idea of an integrated system, the proton conductivity values were also measured for both gel and crystalline states, while the former state yields a better result. The maximum proton conductivity value turns out to be 1.03 × 10-2 S cm-1 at 70 °C, which is higher than or comparable to those of well-known systems in the literature for proton conductivity.

7.
Front Nutr ; 9: 963368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505234

RESUMO

Maize grains are consumed majorly in the form of unleavened flat bread (chapatti) in the South East Asian region. The landraces are better accepted for their chapatti-making attributes such as grain color and good organoleptic properties. However, these cultivars are low in essential amino acids, particularly lysine and tryptophan content. Hence, an investigation was performed to identify maize genotypes with high nutritional value coupled with good chapatti-making qualities. Seven genotypes, comprising two Quality Protein Maize (QPM) hybrids, two normal maize hybrids, and three normal white maize landraces were assessed for their physical characteristics, proximate composition, and chapatti-making quality. Landrace 593 showed the highest protein and ash content. Flours obtained from different genotypes were significantly different (p ≤ 0.001) in terms of protein content, color value, textural, as well as mineral content. PMH 10 and IQMH 203 exhibited the highest and lowest hydration index, respectively. Two QPM hybrids showed significantly higher lysine and tryptophan content as compared to other genotypes. QPM hybrids were identified as the promising material with improved nutritional quality with respect to chapatti making. In combination with mustard greens, maize chapatti constitutes an important traditional delicacy in north India. The enhanced nutritional quality of QPM chapattis is an added advantage. We show the differentiation of chapattis made from QPM and normal maize using a rapid protocol developed previously. This is expected to enable the development and quality control of commercial enterprises based on high protein quality QPM.

8.
PLoS One ; 16(8): e0256389, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34411180

RESUMO

The rising demand for popcorn necessitates improving the popping quality with higher yield of popcorn cultivars. Towards this direction several Quantitative Traits Loci (QTLs) for popping traits have been identified. However, identification of accurate and consistent QTLs across different genetic backgrounds and environments is necessary to effectively utilize the identified QTLs in marker-assisted breeding. In the current study, 99 QTLs related to popping traits reported in 8 different studies were assembled and projected on the reference map "Genetic 2005" using BioMercator v4.2 to identify metaQTLs with consistent QTLs. Total ten metaQTLs were identified on chromosome 1 (7 metaQTLs) and 6 (3 metaQTLs) with physical distance ranging between 0.43 and 12.75 Mb, respectively. Four identified metaQTLs, viz., mQTL1_1, mQTL1_5, mQTL1_7 and mQTL6_2 harboured 5-8 QTL clusters with moderately high R2 value. The clustered QTLs were from two or more experiments. Based on the expression pattern in endosperm and pericarp tissues, a total of 229 genes were selected. Nineteen of these genes are involved in carbohydrate metabolism. Of the 19 genes specifically involved in carbohydrate metabolism, 11 of them were in these regions, implying the importance of these clustered QTLs. MetaQTL1_1 at bin location 1.01 coincided with the reported QTLs related to various agronomic traits like stalk diameter, tassel length, leaf area and plant height. The identified metaQTLs can be further explored for fine mapping and candidate gene identification, which can be validated by loss or gain of function. Identified metaQTLs can be used for introgression of popping traits towards enhancing the popping ability.


Assuntos
Zea mays , Mapeamento Cromossômico , Ligação Genética , Fenótipo , Locos de Características Quantitativas
9.
J Appl Genet ; 62(3): 419-429, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33886083

RESUMO

Sweet corn has gained worldwide popularity. Traditional sweet corn possesses low concentration of essential nutrients such as lysine (0.15-0.25%), tryptophan (0.03-0.04%) and provitamin-A (proA 3-4 ppm), and deficiency leads to serious health problems in humans. Here, stacking of shrunken2 (sh2), opaque2 (o2), lycopene epsilon cyclase (lcyE) and ß-carotene hydroxylase (crtRB1) genes  were undertaken in the parents of four hybrids viz., APQH1, APHQ4, APHQ5 and APHQ7 using marker-assisted backcross breeding (MABB). Gene-linked markers (umc2276 and umc1320) for sh2, while gene-based markers for o2 (umc1066 and phi057), lcyE (5'TE-InDel) and crtRB1 (3'TE-InDel), were used for genotyping in BC1F1, BC2F1 and BC2F2. Selected backcross progenies showed high recovery of recurrent parent genome (92.4-97.7%). The reconstituted sweet corn hybrids possessed significantly high lysine (0.390%), tryptophan (0.082%) and proA (21.14 ppm), coupled with high kernel sweetness (brix 18.96%). The improved sweet corn hybrids had high cob yield (12.22-15.33 t/ha) across three environments. These newly developed biofortified sweet corn hybrids possess great significance in providing balanced nutrition. This is the first report of combining sh2, o2, lcyE and crtRB1 genes for enrichment of sweet corn hybrids with multiple essential nutrients.


Assuntos
Alimentos Fortificados , Valor Nutritivo , Melhoramento Vegetal , Zea mays , Alelos , Genes de Plantas , Marcadores Genéticos , Genômica , Zea mays/genética
10.
RSC Adv ; 11(17): 10094-10109, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35423527

RESUMO

We report herein the development of a new pyridine-pyrazole based bis-bidentate asymmetric chemosensor that shows excellent turn-on chelation-enhanced Al3+-responsive fluorescence. The presence of two 'hard' phenolic hydroxyl groups plays a pivotal role in switching-on the sensing through coordination to the 'hard' Al3+ ion, while the mechanism can be interpreted by the chelation-enhanced fluorescence (CHEF) process. The X-ray single structure show a planar conjugated structure of the ligand, which was further stabilized by extensive H-bonding and π-π stacking. The photophysical studies related to the sensing behavior of the titular ligand toward aluminum was investigated in detail using various spectroscopic techniques like UV-Vis, photoluminescence, fluorescence and time-correlated single-photon count (TCSPC) and time-resolved NMR. The spectroscopic methods also confirm the selective detection of Al3+ ion in the presence of other metal ions. The theoretical calculations using Density Functional Theory (DFT) and the Time Dependent Density Functional Theory (TD-DFT) provide further insight on the mechanistic aspects of the turn-on sensing behavior including the electronic spectra of both the ligand and the complex. Interestingly, the as-synthesized H2DPC-Al complex can also be utilized as a fluorescence-based sensor for various nitroaromatics including picric acid, for which an INHIBIT logic gate can also be constructed. The as synthesized complex was subsequently used as a fluorescent probe for imaging of human breast adenocarcinoma (MCF7) cells using live cell confocal microscopic techniques.

11.
Chem Res Toxicol ; 30(5): 1177-1187, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28402675

RESUMO

The detoxication of DMMP (dimethyl methylphosphonate) mediated by molecular TiO2 has been investigated computationally using density functional theory (DFT). From our previous studies, it is evident that the unimolecular detoxication of OPCs (organophosphorus compounds) is kinetically unfeasible at room temperature due to the significantly high activation barrier. Thus, the aim of our work is to find out whether molecular TiO2 can make any significant impact on the kinetic feasibility of the detoxication processes or not. Here, we have identified a total of three detoxication pathways, where in the first step the detoxication occurs through H-abstraction with the assistance of TiO2, and in the second step, the titanium complex is separated from the respective phospho-titanium complexes. The outcomes reveal that the TiO2-mediated detoxication pathways are at least 20.0 kcal/mol more favorable than their respective unimolecular pathways and that among them, the α-H-mediated isomerization is found to be the most feasible pathway. When the separation of a titanium complex is under consideration, the double H2O-assisted mechanism is found to be the favored pathway. Overall, the entire work provides a widespread idea about the efficiency of molecular TiO2-assisted detoxication of DMMP, which can be well applicable to other OPCs also.


Assuntos
Compostos Organofosforados/toxicidade , Titânio/farmacologia , Gases
12.
Chem Res Toxicol ; 29(9): 1439-57, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27509164

RESUMO

A mechanistic investigation has been carried out to explore all possible gas phase unimolecular isomerization as well as decomposition pathways of toxic organophosphorus compounds (OPCs), namely, sarin (GB) and soman (GD), which are better known as nerve agents. We have identified a total of 13 detoxication pathways for sarin, where the α-H, ß-H, and γ-H take part in the H-transfer process. However, for soman, due to the presence of ω-H, three additional detoxication pathways are obtained, where the ω-H is involved in the H-transfer process. Among all the pathways, the D3 decomposition pathway, where the phosphorus oxoacid derivative and alkene are generated via the formation of a six-membered ring in the transition state, is identified as the most feasible pathway from the perspective of both activation barrier and reaction enthalpy values. Moreover, we have studied the feasibility of the isomerization and decomposition pathways by performing the reaction kinetics in the temperature range of 300 K-1000 K using the one-dimensional Rice-Ramsperger-Kassel-Marcus (RRKM) master equation. From the RRKM calculation also, D3 pathway is confirmed as the most feasible pathway for both OPCs. The rate constant values associated with the D3 pathway within the temperature range of 600 K-700 K imply that the degradation of the OPCs is possible within this temperature range via the D3 pathway, which is in good agreement with the earlier reported experimental result. It is also observed that at higher temperature range (∼900 K), the increased rate constant values of other detoxication pathways indicate that along with D3, all other pathways become more or less equally feasible. Therefore, the entire work provides a widespread idea about the kinetic as well as thermodynamic feasibility of the explored detoxication pathways of the titled OPCs.


Assuntos
Sarina/metabolismo , Soman/metabolismo , Termodinâmica , Gases , Cinética , Estrutura Molecular , Transição de Fase , Sarina/química , Sarina/toxicidade , Soman/química , Soman/toxicidade
13.
Chemistry ; 22(26): 8855-63, 2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-27219524

RESUMO

Low cost, simple, and environmentally friendly strategies for white-light generation which do not require rare-earth phosphors or other toxic or elementally scare species remain an essentially unmet challenge. Progress in the area of all-organic approaches is highly sought, single molecular systems remaining a particular challenge. Taking inspiration from the designer nature of ionic-liquid chemistry, we now introduce a new strategy toward white-light emission based on the facile generation of nanoparticles comprising three different fluorophores assembled in a well-defined stoichiometry purely through electrostatic interactions. The building blocks consist of the fluorophores aminopyrene, fluorescein, and rhodamine 6G which represent blue, green, and red-emitting species, respectively. Spherical nanoparticles 16(±5) nm in size were prepared which display bright white-light emission with high fluorescence quantum efficiency (26 %) and color coordinate at (0.29, 0.38) which lie in close proximity to pure white light (0.33, 0.33). It is noteworthy that this same fluorophore mixture in free solution yields only blue emission. Density functional theory calculations reveal H-bond and ground-state proton transfer mediated absolute non-parallel orientation of the constituent units which result in frustrated energy transfer, giving rise to emission from the individual centers and concomitant white-light emission.


Assuntos
Fluoresceína/química , Luz , Nanopartículas/química , Rodaminas/química , Transferência Ressonante de Energia de Fluorescência , Ligação de Hidrogênio , Conformação Molecular , Tamanho da Partícula , Prótons , Teoria Quântica , Eletricidade Estática , Termogravimetria
14.
J Mater Chem B ; 2(29): 4733-4739, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32262285

RESUMO

A new salicylaldehyde appended fluorene-based chemodosimeter (FSal) has been designed by taking consideration of the special nucleophilicity of cyanide ion. FSal shows selective affinity towards CN- over other anions (namely F-, Br-, NO3 -, ClO4 -, N3 -, H2PO4 -, AcO-, I-, Cl-, and NO2 -) through turn-on fluorescence with a minimum detection limit of 0.06 ppm. The turn-on fluorescence of the FSal-CN complex resulting from hampering ESIPT is also supported by DFT and TDDFT calculations. Biological compatibility and live cell imaging of this unique probe have also been explored.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 67(3-4): 894-7, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17197233

RESUMO

The spectroscopic properties of CuAr, CuAr(+) and CuAr(-) have been studied in detail using ab initio MP2, CCSD and CCSD(T) methods. The effect of basis set on spectroscopic properties of these molecular systems has also been investigated. Among these molecules, CuAr(+) is found to be more strongly bound than CuAr and CuAr(-). The spectroscopic properties of CuAr and CuAr(-) are calculated in Lennard-Jones potential and the spectroscopic properties of CuAr(+) are calculated in Morse potential. Most of the spectroscopic constants of CuAr, CuAr(+) and all the spectroscopic constants of CuAr(-) are first reported. Our calculated bond length, harmonic frequency and dissociation energy of CuAr and CuAr(+) agree very well with the existing theoretical results.


Assuntos
Argônio/química , Cobre/química , Íons , Análise Espectral/métodos , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...