Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
OMICS ; 28(6): 303-318, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38805323

RESUMO

Food production must undergo systems change to meet the sustainable development goals (SDGs). For example, organic farming can be empowered by soil microorganisms with plant growth promotion (PGP) and biocontrol features. In this context, there have been limited studies on pomegranate. We investigated microbial diversity in rhizosphere of the pomegranate "Bhagwa" variety and its potential role in PGP and biocontrol. Both bulk and rhizosphere soil samples were analyzed for their physicochemical properties. Whole metagenome sequencing was conducted using the Illumina NovaSeq6000 platform. Surprisingly, we found that bulk and rhizosphere soil samples had comparable microbial diversity. Metagenome sequencing revealed the abundance of Streptomyces indicus, Bradyrhizobium kalamazoonesis, and Pseudomonas cellulosum in the rhizosphere that are reported here for the first time in agricultural literature. Pathway prediction analysis using KEGG (Kyoto Encyclopedia for Genes and Genomes) and COG (clusters of orthologous genes) databases identified metabolic pathways associated with biocontrol properties against pathogens. We confirmed the metagenome data in vitro, which demonstrated their PGP potential and antimicrobial properties. For instance, S. indicus produced high concentration of indole-3-acetic acid, a PGP phytohormone, that can stimulate plant growth. In addition, an antimicrobial susceptibility assay suggested that bacterial extracts displayed activity against Xanthomonas, a primary pathogen causing the pomegranate wilt disease. In conclusion, this study suggests that S. indicus, B. kalamazoonesis, and P. cellulosum can potentially be PGP and biocontrol agents that may contribute to increased crop productivity in pomegranate cultivation. These agents and their combinations warrant future research with an eye on SDGs and so as to enable and innovate organic farming and pomegranate agricultural practices.


Assuntos
Metagenômica , Agricultura Orgânica , Punica granatum , Rizosfera , Microbiologia do Solo , Metagenômica/métodos , Agricultura Orgânica/métodos , Punica granatum/microbiologia , Punica granatum/genética , Punica granatum/crescimento & desenvolvimento , Metagenoma , Desenvolvimento Vegetal , Ácidos Indolacéticos/metabolismo , Microbiota/genética
2.
Sci Rep ; 13(1): 8653, 2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244920

RESUMO

Pomegranate crops are prone to wilt complex disease, which is known to severely hamper the crop yield. There have been limited studies that have explored bacteria-plant-host associations in wilt complex disease affecting pomegranate crops. In the present study, wilt infected rhizosphere soil samples (ISI, ASI) in pomegranate were studied in comparison to a healthy control (HSC). The 16S metagenomics sequencing approach using the MinION platform was employed for screening of bacterial communities and predictive functional pathways. Altered physicochemical properties in the soil samples were recorded showing a comparatively acidic pH in the ISI (6.35) and ASI (6.63) soil samples to the HSC soil (7.66), along with higher electrical conductivity in the ISI (139.5 µS/cm), ASI soil (180 µS/cm), HSC soil sample (123.33 µS/cm). While concentration of micronutrients such as Cl and B were significantly higher in the ISI and ASI soil as compared to the HSC, Cu and Zn were significantly higher in the ASI soil. The effectiveness and accuracy of 16S metagenomics studies in identifying beneficial and pathogenic bacterial communities in multi-pathogen-host systems depend on the completeness and consistency of the available 16S rRNA sequence repositories. Enhancing these repositories could significantly improve the exploratory potential of such studies. Thus, multiple 16S rRNA data repositories (RDP, GTDB, EzBioCloud, SILVA, and GreenGenes) were benchmarked, and the findings indicated that SILVA yields the most reliable matches. Consequently, SILVA was chosen for further analysis at the species level. Relative abundance estimates of bacterial species showed variations of growth promoting bacteria, namely, Staphylococcus epidermidis, Bacillus subtilis, Bacillus megatarium, Pseudomonas aeruginosa, Pseudomonas putida, Pseudomonas stutzeri and Micrococcus luteus. Functional profiling predictions employing PICRUSt2 revealed a number of enriched pathways such as transporter protein families involved in signalling and cellular processes, iron complex transport system substrate binding protein, peptidoglycan biosynthesis II (staphylococci) and TCA cycle VII (acetate-producers). In line with past reports, results suggest that an acidic pH along with the bioavailability of micronutrients such as Fe and Mn could be facilitating the prevalence and virulence of Fusarium oxysporum, a known causative pathogen, against the host and beneficial bacterial communities. This study identifies bacterial communities taking into account the physicochemical and other abiotic soil parameters in wilt-affected pomegranate crops. The insights obtained could be instrumental in developing effective management strategies to enhance crop yield and mitigate the impact of wilt complex disease on pomegranate crops.


Assuntos
Punica granatum , Solo , Solo/química , RNA Ribossômico 16S/genética , Rizosfera , Bactérias , Microbiologia do Solo , Doenças das Plantas/microbiologia
3.
Arch Microbiol ; 204(8): 481, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35834016

RESUMO

Agricultural productivity of pomegranate can be enhanced by identifying the crop-associated microbial diversity in the rhizosphere region with respect to plant growth promoters and other beneficial organisms. Traditional culture methods have limitations in microbial screening as only 1-2% of these organisms can be cultured. In the present study, 16S rRNA amplicon-based metagenomics approach using MinION Oxford Nanopore platform was employed to explore the microbial diversity in the rhizosphere of pomegranate Bhagwa variety, across variable soil depths from 0 to 5 cms (R2), 5-10 cms (R4) and 10-15 cms (R6), using bulk soil as the control. Across all the three layers, significant variations in pH, nitrogen content and total fungal count were observed. 16S rRNA analysis showed the abundance of planctomycetes, Pirellula staleyi, followed by bacteroidetes, Flavisolibacter LC59 and Niastella koreensis across the various soil depths in the rhizospheric soil samples. Pathway prediction analysis indicated arginine and proline metabolism (gamma-glutamyl putrescine oxidase) and hydrogen sulfide biosynthesis as the most abundant pathway hits. Comparative abundance analysis across layers showed the R6 layer with the maximum microbial diversity in terms of highest dimension of variation (79.2%) followed by R4 and R2 layers (p < 0.01). Our analysis shows the significant influence of root zone in shaping microbial diversity. This study has reported the presence of Planctomycetes, Pirellula staleyi for the first time in the pomegranate field.


Assuntos
Punica granatum , Rizosfera , Bacteroidetes/genética , Metagenoma , Planctomycetales , Planctomicetos , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do Solo
4.
Front Genet ; 13: 786825, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646087

RESUMO

The wonder fruit pomegranate (Punica granatum, family Lythraceae) is one of India's economically important fruit crops that can grow in different agro-climatic conditions ranging from tropical to temperate regions. This study reports high-quality de novo draft hybrid genome assembly of diploid Punica cultivar "Bhagwa" and identifies its genomic features. This cultivar is most common among the farmers due to its high sustainability, glossy red color, soft seed, and nutraceutical properties with high market value. The draft genome assembly is about 361.76 Mb (N50 = 40 Mb), ∼9.0 Mb more than the genome size estimated by flow cytometry. The genome is 90.9% complete, and only 26.68% of the genome is occupied by transposable elements and has a relative abundance of 369.93 SSRs/Mb of the genome. A total of 30,803 proteins and their putative functions were predicted. Comparative whole-genome analysis revealed Eucalyptus grandis as the nearest neighbor. KEGG-KASS annotations indicated an abundance of genes involved in the biosynthesis of flavonoids, phenylpropanoids, and secondary metabolites, which are responsible for various medicinal properties of pomegranate, including anticancer, antihyperglycemic, antioxidant, and anti-inflammatory activities. The genome and gene annotations provide new insights into the pharmacological properties of the secondary metabolites synthesized in pomegranate. They will also serve as a valuable resource in mining biosynthetic pathways for key metabolites, novel genes, and variations associated with disease resistance, which can facilitate the breeding of new varieties with high yield and superior quality.

5.
3 Biotech ; 11(5): 245, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33968588

RESUMO

Intensive cropping degrades soil quality and disrupts the soil microbiome. To understand the effect of rice monocropping on soil-microbiome, we used a comparative 16S rRNA metagenome sequencing method to analyze the diversity of soil microflora at the genomic level. Soil samples were obtained from five locations viz., Chamarajnagara, Davangere, Gangavathi, Mandya, and Hassan of Karnataka, India. Chemical analysis of soil samples from these locations revealed significant variations in pH (6.00-8.38), electrical conductivity (0.17-0.69 dS m-1), organic carbon (0.51-1.29%), available nitrogen (279-551 kg ha-1), phosphorous (57-715 kg ha-1) and available potassium (121-564 kg ha-1). The 16S metagenome analysis revealed that the microbial diversity in Gangavathi soil samples was lower than in other locations. The soil sample of Gangavathi showed a higher abundance of Proteobacteria (85.78%) than Mandya (27.18%). The Firmicutes were more abundant in Chamarajnagar samples (36.01%). Furthermore, the KEGG pathway study revealed enriched nitrogen, phosphorus, and potassium metabolism pathways in all soil samples. In terms of the distribution of beneficial microflora, the decomposers were more predominant than the nutrient recyclers such as nitrogen fixers, phosphorous mineralizers, and nitrifiers. Furthermore, we isolated culturable soil microbes and tested their antagonistic activity in vitro against a fungal pathogen of rice, Magnaporthe oryzae strain MG01. Six Bacillus sp. and two strains of Trichoderma harzianum showed higher antagonistic activity against MG01. Our findings indicate that metagenome sequencing can be used to investigate the diversity, distribution, and abundance of soil microflora in rice-growing areas. The knowledge gathered can be used to develop strategies for maintaining soil quality and crop conservation to increase crop productivity. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02783-y.

6.
Front Biosci (Landmark Ed) ; 26(3): 478-495, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33049679

RESUMO

Soil constitutes a major component of the agro-ecosystem. Unrestrained uses of chemical pesticides and increased human activities have contributed to unprecedented changes in soil microflora affecting productivity. Modern microbiomics has proven to be an indispensable tool to understand the adaptations underlying complex soil microbial communities and their beneficial applications. In this review, we seek to emphasize the scope of microbiomics in enhancing soil productivity by providing an overview of the various sequencing platforms considering key parameters such as the accuracy, read lengths, reads per run, time involved and weighing out their pros and cons. The advances in modern ultra-high-throughput microbiomics platforms in combination with cloud-based analytics for in-depth exploration of soil-microbe associations can help achieve sustainable soil management contributing to better plant yield and productivity.


Assuntos
Computação em Nuvem , Microbiota , Microbiologia do Solo , Ecossistema
7.
OMICS ; 24(12): 726-742, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33170083

RESUMO

Coconut (Cocos nucifera L.), an important source of vegetable oil, nutraceuticals, functional foods, and housing materials, provides raw materials for a repertoire of industries engaged in the manufacture of cosmetics, soaps, detergents, paints, varnishes, and emulsifiers, among other products. The palm plays a vital role in maintaining and promoting the sustainability of farming systems of the fragile ecosystems of islands and coastal regions of the tropics. In this study, we present the genome of a dwarf coconut variety "Chowghat Green Dwarf" (CGD) from India, possessing enhanced resistance to root (wilt) disease. Utilizing short reads from the Illumina HiSeq 4000 platform and long reads from the Pacific Biosciences RSII platform, we have assembled the draft genome assembly of 1.93 Gb. The genome is distributed over 26,855 scaffolds, with ∼81.56% of the assembled genome present in scaffolds of lengths longer than 50 kb. About 77.29% of the genome was composed of transposable elements and repeats. Gene prediction yielded 51,953 genes, which upon stringent filtering, based on Annotation Edit Distance, resulted in 13,707 genes, which coded for 11,181 proteins. Among these, we gathered transcript level evidence for a total of 6828 predicted genes based on the RNA-Seq data from different coconut tissues, since they presented assembled transcripts within the genome annotation coordinates. A total of 112 nucleotide-binding and leucine-rich repeat loci, belonging to six classes, were detected. We have also undertaken the assembly and annotation of the CGD chloroplast and mitochondrial genomes. The availability of the dwarf coconut genome shall prove invaluable for deducing the origin of dwarf coconut cultivars, dissection of genes controlling plant habit and fruit color, and accelerated breeding for improved agronomic traits.


Assuntos
Cocos/genética , Biologia Computacional , Resistência à Doença/genética , Genoma de Planta , Genômica , Anotação de Sequência Molecular , Biologia Computacional/métodos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Nutrigenômica/métodos , Fenótipo
8.
3 Biotech ; 10(8): 342, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32714737

RESUMO

False smut disease of rice caused by Ustilaginoidea virens, is an emerging threat to rice cultivation worldwide due to its detrimental effects on grain yield and quality. False smut disease severity was 4.44‒17.22% during a roving survey in Kharif 2016 in the four different rice ecosystems of Karnataka, India. Further, 15 pathogen isolates representing four different ecosystems were studied for their virulence and morphometric diversity. Among the 15 strains studied, most virulent strains Uv-Gvt was selected for whole genome sequencing in Illumina NextSeq 500 platform using 2 × 150 bp sequencing chemistry. The total assembled genome of Uv-Gvt was 26.96 Mb, which comprised of 9157 scaffolds with an N50 value of 15,934 bp and 6628 protein-coding genes. Next, the comparative genomic study revealed a similar gene inventory as UV-8b and MAFF 236576 strains reported from China and Japan, respectively. But, 1756 genes were unique to Uv-Gvt strain. The Uv-Gvt genome harbors 422 putative host-pathogen interacting genes compared to 359 and 520 genes in UV-8b and MAFF 236576 strains, respectively. The variant analysis revealed low genetic diversity (0.073‒0.088%) among U. virens strains. Further, phylogenetic analysis using 250 single copy orthologs genes of U. virens revealed a distinct phylogeny and an approximate divergence time. Our study, report the genomic resource of rice false smut pathogen from India, where the disease originated, and this information will have broader applicability in understanding the pathogen population diversity.

9.
ACS Omega ; 3(10): 12562-12574, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30411010

RESUMO

The current study evaluates antidiabetic, anticoagulant, and antiplatelet activity of novel benzimidazole-containing quinolinyl oxadiazoles. These derivatives are synthesized and characterized using spectroscopy (FT-IR, 1H NMR, and mass spectroscopy) and single-crystal X-ray diffraction methods. The inhibitory effects of these compounds were evaluated by the α-glucosidase inhibitory assay and shows the activity in the range of IC50 = 0.66 ± 0.05 to 3.79 ± 0.46 µg/mL. In addition, molecular docking studies revealed that benzimidazole-containing quinolinyl oxadiazoles can correctly dock into the target receptor protein of the human intestinal α-glucosidase, while their bioavailability/drug-likeness was predicted to be acceptable but requires further optimization. On the other hand, compound 8a and 8d showed anticoagulant activity as they enhanced the clotting time from control 180-410 and 180-390 s, respectively, in platelet rich plasma and 230-460 and 230-545 s in platelet poor plasma. Furthermore, only 8a showed antiplatelet activity by inhibiting epinephrine-induced platelet aggregation, and the observed aggregation inhibition was found to be 93.4%. Compounds 8a-f show nontoxic properties because of the non-hydrolyzing properties in the RBC cells. In addition, 8a and 8d show anti-edema and anti-hemorrhagic properties in the experimental mice. These findings reveal that benzimidazole-containing quinolinyl oxadiazoles act as α-glucosidase inhibitors to develop novel therapeutics for treating type-II diabetes mellitus and can act as lead molecules in drug discovery as potential antidiabetic and antithrombotic agents.

10.
Curr Hypertens Rep ; 19(7): 57, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28597404

RESUMO

Hypertension (HTN) is a chronic medical condition that commonly affects the aging population worldwide. The prevalence of HTN is increasing in developing countries and is one of the leading causes of death in older individuals. HTN results from a complex interplay of genetic and environmental factors. Besides, HTN can result in various other health complications such as stroke and chronic kidney diseases, if not treated. Although various studies have explained the underlying mechanisms in the pathogenesis of HTN, limited information is available on their biomarkers. MicroRNAs (miRNAs) are RNA molecules that have been recognized as key regulators for HTN. miR-21 is a common microRNA that is has been reported to be significantly upregulated in HTN individuals. Hence, miR-21 can be a potential therapeutic target for HTN. The number of studies related to miR-21 on hypertension is limited. Therefore, the main thrust of this paper is to provide an overview of the current clinical evidence and significance of miR-21 in HTN.


Assuntos
Hipertensão Pulmonar/sangue , Hipertensão/sangue , MicroRNAs/sangue , Animais , Biomarcadores/sangue , Humanos , Hipertensão/genética , Hipertensão Pulmonar/genética , MicroRNAs/genética , Regulação para Cima
11.
J Clin Microbiol ; 54(4): 851-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26818666

RESUMO

The unrestricted use of antibiotics has resulted in rapid acquisition of antibiotic resistance (AR) and spread of multidrug-resistant (MDR) bacterial pathogens. With the advent of next-generation sequencing technologies and their application in understanding MDR pathogen dynamics, it has become imperative to unify AR gene data resources for easy accessibility for researchers. However, due to the absence of a centralized platform for AR gene resources, availability, consistency, and accuracy of information vary considerably across different databases. In this article, we explore existing AR gene data resources in order to make them more visible to the clinical microbiology community, to identify their limitations, and to propose potential solutions.


Assuntos
Bases de Dados Genéticas , Farmacorresistência Bacteriana , Genes Bacterianos , Animais , Biologia Computacional/métodos , Humanos , Testes de Sensibilidade Microbiana/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...