Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fluoresc ; 32(4): 1263-1277, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35708890

RESUMO

The Schiff-base probe H2VL [6,6'-((1E,1'E)-hydrazine-1,2 diylidenebis(methanylylidene))bis(2-methoxyphenol)] is synthesized and structurally characterized by single crystal X-ray diffraction (SCXRD). H2VL is able to detect selectively acetate ion (OAc-) colorimetrically over other anions with 1:1 co-ordination. The detection limit is found to be 4.93 µM. On the other hand, fluorescence intensity of the receptor is drastically enhanced with Zn2+ and Cd2+ in the presence of acetate as counter anion. N, N-Dimethyl formamide (DMF) or Dimethylsulphoxide (DMSO) and acetate (OAc-) was the best solvent and counter anion for Zn2+/Cd2+ -sensing compared with other solvents and anions, respectively. Detection limit for Zn2+ and Cd2+ are calculated to be 1.94 µM and 1.99 µM, respectively. The strong selective emissive behavior could be attributed to the CHEF (chelation-enhanced fluorescence) process. According to the changes in output emission intensity in DMSO in response to the set of ions (Zn2+, Cd2+ and OAc¯) as input variables, the function of 3-input multifunctional molecular logic circuits has been demonstrated. The molecular docking studies of H2VL with DNA and BSA are also performed to confirm its possible bioactivity.


Assuntos
Cádmio , Zinco , Acetatos , Ânions , Dimetil Sulfóxido , Simulação de Acoplamento Molecular , Espectrometria de Fluorescência , Zinco/química
2.
Anal Methods ; 13(37): 4266-4279, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34591947

RESUMO

For practical applications, the development of bio-compatible organic molecules as p-block ion chemosensors is critical. Herein, we report the single crystal (SC) of new pyridine-pyrazole derived Al3+ sensor H2PPC [(Z)-N'-(2,3-dihydroxybenzylidene)-5-methyl-1-(pyridin-2-yl)-1H-pyrazole-3-carbohydrazide] as well as its Cu-complex SC. The probe exhibits an "off-on" fluorescence response towards Al3+ ions, and this has been modulated with different solvents. For selective detection of Al3+ ions, a special coordination pocket in the structural backbone is advantageous. The chemosensor exhibits a submicromolar detection level (LOD = 4.78 µM) for Al3+. The density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations of H2PPC and [Al(HPP)2]+ (1) reveal that a change of the structural conformation of probe H2PPC upon complexation causes the pyrazole and pyridine units to create a specific cavity to tether Al3+, and consequently H2PPC proves to be a promising molecule for Al3+ detection. Furthermore, the probe has been successfully used to evaluate Al3+ as a low-cost kit using filter paper strips, and the in situ Al3+ ion imaging in Vero cells as well as A549 cell lines shows the sensor's nuclear envelope penetrability, indicating that it has great potential for biological and environmental applications.


Assuntos
Corantes Fluorescentes , Pirazóis , Animais , Chlorocebus aethiops , Piridinas , Espectrometria de Fluorescência , Células Vero
3.
J Phys Chem A ; 125(7): 1490-1504, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33565874

RESUMO

The absence of d-orbital electrons or presence of full-filled d-orbital electrons in metal ions is a well-known Achilles' heel problem for the detection of these metal ions by a simple UV-visible study. For this reason, detection of metal ions such as Al3+ with no d-orbital electrons or Zn2+ with filled d-orbital electrons is a challenging task. Herein, we report a 2-naphthol-based fluorescent probe [1-((E)-((E)-(5-bromo-2-hydroxybenzylidene)hydrazono)methyl)naphthalen-2-ol] (H2L) that has been used to sense and discriminate Al3+ and Zn2+ via solvent regulation. The probe exhibits excellent selectivity and swift sensitivity toward Al3+ in MeOH-water (9:1, v/v) and toward Zn2+ in dimethyl sulfoxide (DMSO)-water (9:1, v/v) among various metal ions. The respective detection limit is found to be 9.78 and 3.65 µM. The sensing mechanism is attributed to multiple processes, viz., the inhibition of photo-induced electron transfer (PET) along with the introduction of chelation-enhanced emission (CHEF) and excited-state intramolecular proton transfer (ESIPT) inhibition, which are experimentally well verified by UV-vis absorption spectroscopy, emission spectroscopy, and NMR spectroscopy. The probe shows aggregation-induced emissive (AIE) response in ≥70% aqueous media as well as in the solid state. The experimental results are well corroborated by time-resolved photoluminescence (TRPL) and density functional theory (DFT) calculations. An advanced-level OR-AND-NOT logic gate has been constructed from a different chemical combinational input and emission output. The reversible recognition of both Al3+ in MeOH-water (9:1, v/v) and Zn2+ in DMSO-water (9:1, v/v) is also ascertained in the presence of Na2EDTA, enabling the construction of a molecular memory device. The probe H2L also detects intracellular Al3+/Zn2+ ions in Hela cells. Altogether, our fundamental findings will pave the way for designing and synthesis of unique chemosensors that could be used for cell imaging studies as well as constructing molecular logic gates.

4.
Anal Sci Adv ; 2(9-10): 447-463, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38716442

RESUMO

Counter anion-triggered metal ion detection has been rarely reported by fluorimetric method. To address this challenging issue, a fluorescent probe (H2L) has been synthesized from bromo-salicylaldehyde and hydrazine hydrate, and structurally characterized by single crystal X-ray diffraction. The probe shows very weak fluorescence itself. However, its emission intensity increases in the presence of Zn2+ over other metal ions. Surprisingly, the emission profile of this probe in presence of Zn2+ is augmented only when acetate anion (OAc¯) is present as counter anion, that allows for precise quantitative analysis by spectroscopic studies. The compositions and complexation among the probe, Zn2+ ion, and OAc¯ are supported by ESI-MS, 1H-NMR, and Job's plot. Based on these studies, it is confirmed that the binding ratio between probe: metal is 1:2 and the detection limit (LOD) for the Zn2+ is 2.18 µM. The probe is capable of recognizing Zn2+ ion in the wide range of pH∼6.5-9.5, and it could be efficiently recycled by EDTA. Furthermore, the combinatorial molecular logic gate and memory device have been constructed from the fluorescent behavior of H2L with Zn2+, OAc¯, and EDTA input as based on NOT and AND gates. Interestingly, the aggregation-induced emission (AIEE) phenomenon is also perceived with greater than 50% water content in organic water mixtures, which are then useful for the detection of picric acid often used as explosive.

5.
ACS Omega ; 5(29): 18411-18423, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32743218

RESUMO

The synthesized Schiff base ligand 3-hydroxy-N'-(2-hydroxy-3-methoxybenzylidene)-2-naphthohydrazide (H2NPV) is structurally characterized by single-crystal X-ray diffraction (XRD) and exhibits weak fluorescence in the excited state owing to the effect of excited-state-induced proton transfer (ESIPT). However, in the presence of Al3+, the ESIPT is blocked and chelation-enhanced fluorescence (CHEF) is induced because of complexation with the cations, resulting in turn-on emission for Al3+. The probe H2NPV selectively detects Al3+ among the various metal ions, and the detection limit is found to be 1.70 µM. The composition and modes of complex coordination were determined by spectroscopic, theoretical studies and molecular logic gate applications. Finally, DNA binding studies were performed by spectroscopic and calorimetric methods to elucidate possible bioactivity of H2NPV.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 219: 319-332, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31054496

RESUMO

A photoinduced electron transfer (PET) and chelation-enhanced fluorescence (CHEF) regulated rhodamine-azobenzene chemosensor (L) was synthesized for chemoselective detection of Al3+, Cr3+, and Cu2+ by UV-Visible absorption study whereas Al3+ and Cr3+ by fluorimetric study in EtOH-H2O solvent. L showed a clear fluorescence emission enhancement of 21 and 16 fold upon addition of Al3+ and Cr3+ due to the 1:1 host-guest complexation, respectively. This is first report on rhodamine-azobenzene based Cr3+ chemosensor. The complex formation, restricted imine isomerization, inhibition of PET (photo-induced electron transfer) process with the concomitant opening of the spirolactam ring induced a turn-on fluorescence response. The higher binding constants 6.7 × 103 M-1 and 3.8 × 103 M-1 for Al3+ and Cr3+, respectively and lower detection limits 1 × 10-6 M and 2 × 10-6 M for Al3+ and Cr3+, respectively in a buffered solution with high reversible nature describes the potential of L as an effective tool for detecting Al3+ and Cr3+ in a biological system with higher intracellular resolution. Finally, L was used to map the intracellular concentration of Al3+ and Cr3+ in human lymphocyte cells (HLCs) at physiological pH very effectively. Altogether, our findings will pave the way for designing new chemosensors for multiple analytes and those chemosensors will be effective for cell imaging study.


Assuntos
Alumínio/análise , Compostos Azo/química , Cromo/análise , Cobre/análise , Linfócitos/química , Rodaminas/química , Técnicas Biossensoriais , Cátions/análise , Células Cultivadas , Fluorometria , Humanos , Limite de Detecção , Espectrofotometria Ultravioleta
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 212: 222-231, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30641362

RESUMO

A novel Schiff base L composed of fluorescein hydrazine and a phenol functionalized moiety has been designed and prepared via cost-effective condensation reaction. The L is utilized for selective sensing of Zn2+ over other environmental and biological relevant metal ions in aqueous alcoholic solution under physiological pH range. The binding of Zn2+ to the receptor L is found to causes ~23 fold fluorescence enhancement of L. The 1:1 binding mode of the metal complex is established by combined UV-Vis, fluorescence, and HRMS (high-resolution mass spectroscopy) spectroscopic methods. The binding constant (Ka) for complexation and the limit of detection (LOD) of Zn2+ is calculated to be 2.86 × 104 M-1 and 1.59 µM, respectively. Further photophysical investigations including steady-state, time-resolved fluorescence analysis and spectral investigations including NMR (nuclear magnetic resonance), IR (infrared spectroscopy) suggest introduction of CHEF (chelation enhance fluorescence) with the suppression of CN isomerization and PET (photo-induced electron transfer) mechanism for the strong fluorescent response towards Zn2+. Finally, the sensor L is successfully employed to monitor a real-time detection of Zn2+ by means of TLC (thin layer chromatography) based paper strip. The L is used in the cell imaging study using African green monkey kidney cells (Vero cells) for the determination of exogenous Zn2+ by Immunofluorescence Assay (IFA) process.


Assuntos
Técnicas Biossensoriais/métodos , Fluoresceína/química , Imageamento Tridimensional , Bases de Schiff/química , Zinco/análise , Animais , Sobrevivência Celular , Chlorocebus aethiops , Fluoresceína/síntese química , Concentração de Íons de Hidrogênio , Ligantes , Luminescência , Bases de Schiff/síntese química , Solventes/química , Espectrometria de Fluorescência , Fatores de Tempo , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...