Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(15): 10416-10421, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38567347

RESUMO

A straightforward and convenient approach for producing AgCN at room temperature using acetonitrile as a source has been developed, employing various iron salts. To date, there have been no prior studies documenting the synthesis of AgCN by cleaving the C-CN bond in acetonitrile with the use of iron salts. The resulting highly crystalline material was subjected to characterization through XRD and FT-IR analysis. Additionally, the same process was used for C-CN bond breaking using Ag2S or via the formation of an AgSxOy composite. Consequently, this report is primarily dedicated to exploring the efficacy of different iron salts in breaking the C-CN bond in CH3CN. A theoretical investigation of the proposed experimental scheme has also been performed to confer the feasibility of the reaction.

2.
J Colloid Interface Sci ; 608(Pt 2): 1526-1542, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742071

RESUMO

The cobalt oxide-vanadium oxide (Co3O4-V2O5) combined with reduced graphene oxide (rGO) having band gap of âˆ¼ 3.3 eV appeared as a suitable photocatalyst for selective oxidation of 2-naphthol to BINOL. C2-symmetric BINOL was achieved with good yield using hydrogen peroxide as the oxidant under UV-light irradiation. The same catalyst was chirally modified with cinchonidine and a newly synthesized chiral Schiff base ligand having a sigma-hole center. The strong interaction of the chiral modifiers with the cobalt-vanadium oxide was truly evident from various spectroscopic studies and DFT calculations. The chirally modified mixed metal oxide transformed the oxidative CC coupling reaction with high enantioselectivity. High enantiomeric excess upto 92 % of R-BINOL was obtained in acetonitrile solvent and hydrogen peroxide as the oxidant. A significant achievement was the formation of S-BINOL in the case of the cinchonidine modified catalyst and R-BINOL with the Schiff base ligand anchored chiral catalyst. The UV-light induced catalytic reaction was found to involve hydroxyl radical as the active reactive species. The spin trapping ESR and fluorescence experiment provided relevant evidence for the formation of such species through photodecomposition of hydrogen peroxide on the catalyst surface. The chiral induction to the resultant product was found to induce through supramolecular interaction like OH…π, H…Br interaction. The presence of sigma hole center was believed to play significant role in naphtholate ion recognition during the catalytic cycle.


Assuntos
Cobalto , Vanadatos , Grafite , Naftóis , Óxidos , Estereoisomerismo
3.
RSC Adv ; 10(14): 8314-8318, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35497870

RESUMO

Extraction of silver as silver cyanide from silver sulfide was made possible using acetonitrile as the source of cyanide. The process of cyanidation took place through the oxidation of sulfide to sulfur oxides and cleavage of the C-CN bond of acetonitrile. The reaction was found to be catalyzed by vanadium pentoxide and hydrogen peroxide. The different species involved in the cyanidation process were duly characterized using FTIR, ESI-MS, HRMS, XPS and UV-vis spectroscopic analysis. The mechanism of the cyanidation process was confirmed through in situ FTIR analysis.

4.
Chem Commun (Camb) ; 56(3): 375-378, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31808766

RESUMO

A Pd-NiO-based catalyst hybridized with zeolite-Y and multiwalled carbon nanotubes has been found to show a remarkable mass activity in the electrochemical oxidation of methanol with long term durability up to 80 000 s.

5.
ACS Appl Mater Interfaces ; 9(40): 35453-35462, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28933824

RESUMO

Solid-state grinding of palladium and copper salts allowed the growth of palladium/copper oxide interface at the zeolite-Y surface. The hybrid nanostructured material was used as reusable heterogeneous catalyst for selective oxidation of various benzyl alcohols. The large surface area provided by the zeolite-Y matrix highly influenced the catalytic activity, as well as the recyclability of the synthesized catalyst. Impregnation of PdO-CuO nanoparticles on zeolite crystallite leads to the generation of mesoporous channel that probably prevented the leaching of the metal-oxide nanoparticles and endorsed high mass transfer. Formation of mesoporous channel at the external surface of zeolite-Y was evident from transmission electron microscopy and surface area analysis. PdO-CuO nanoparticles were found to be within the range of 2-5 nm. The surface area of PdO-CuO-Y catalyst was found to be much lower than parent zeolite-Y. The decrease in surface area as well as the presence of hysteresis loop in the N2-adsoprtion isotherm further suggested successful encapsulation of PdO-CuO nanoparticles via the mesoporous channel formation. The high positive shifting in binding energy in both Pd and Cu was attributed to the influence of zeolite-Y framework on lattice contraction of metal oxides via confinement effect. PdO-CuO-Y catalyst was found to oxidize benzyl alcohol with 99% selectivity. On subjecting to microwave irradiation the same oxidation reaction was found to occur at ambient condition giving same conversion and selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...