Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Med Imaging Graph ; 93: 101975, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34461375

RESUMO

Image segmentation remains to be one of the most vital tasks in the area of computer vision and more so in the case of medical image processing. Image segmentation quality is the main metric that is often considered with memory and computation efficiency overlooked, limiting the use of power hungry models for practical use. In this paper, we propose a novel framework (Kidney-SegNet) that combines the effectiveness of an attention based encoder-decoder architecture with atrous spatial pyramid pooling with highly efficient dimension-wise convolutions. The segmentation results of the proposed Kidney-SegNet architecture have been shown to outperform existing state-of-the-art deep learning methods by evaluating them on two publicly available kidney and TNBC breast H&E stained histopathology image datasets. Further, our simulation experiments also reveal that the computational complexity and memory requirement of our proposed architecture is very efficient compared to existing deep learning state-of-the-art methods for the task of nuclei segmentation of H&E stained histopathology images. The source code of our implementation will be available at https://github.com/Aaatresh/Kidney-SegNet.


Assuntos
Aprendizado Profundo , Núcleo Celular , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Software
2.
Comput Biol Med ; 128: 104075, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33190012

RESUMO

The nuclei segmentation of hematoxylin and eosin (H&E) stained histopathology images is an important prerequisite in designing a computer-aided diagnostics (CAD) system for cancer diagnosis and prognosis. Automated nuclei segmentation methods enable the qualitative and quantitative analysis of tens of thousands of nuclei within H&E stained histopathology images. However, a major challenge during nuclei segmentation is the segmentation of variable sized, touching nuclei. To address this challenge, we present NucleiSegNet - a robust deep learning network architecture for the nuclei segmentation of H&E stained liver cancer histopathology images. Our proposed architecture includes three blocks: a robust residual block, a bottleneck block, and an attention decoder block. The robust residual block is a newly proposed block for the efficient extraction of high-level semantic maps. The attention decoder block uses a new attention mechanism for efficient object localization, and it improves the proposed architecture's performance by reducing false positives. When applied to nuclei segmentation tasks, the proposed deep-learning architecture yielded superior results compared to state-of-the-art nuclei segmentation methods. We applied our proposed deep learning architecture for nuclei segmentation to a set of H&E stained histopathology images from two datasets, and our comprehensive results show that our proposed architecture outperforms state-of-the-art methods. As part of this work, we also introduced a new liver dataset (KMC liver dataset) of H&E stained liver cancer histopathology image tiles, containing 80 images with annotated nuclei procured from Kasturba Medical College (KMC), Mangalore, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India. The proposed model's source code is available at https://github.com/shyamfec/NucleiSegNet.


Assuntos
Aprendizado Profundo , Neoplasias Hepáticas , Núcleo Celular , Humanos , Processamento de Imagem Assistida por Computador , Índia , Neoplasias Hepáticas/diagnóstico por imagem , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...