Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(4): 1490-1525, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38186362

RESUMO

Structural health monitoring (SHM) is a critical aspect of ensuring the safety and durability of smart biocomposite materials used as multifunctional materials. Smart biocomposites are composed of renewable or biodegradable materials and have emerged as eco-friendly alternatives of traditional non-biodegradable glass fiber-based composite materials. Although biocomposites exhibit fascinating properties and many desirable traits, real-time and early stage SHM is the most challenging issue to enable their long-term use. Smart biocomposites are integrated with sensors for in situ identification of the progress of damage and composite failure. The sensitivity of such smart biocomposites is a key functionality, which can be tuned by the introduction of an appropriate filler. In particular, nanocarbons hold promising potential to be incorporated in SHM applications of biocomposites. This review focused on the potential applications of nanocarbons in SHM of biocomposites. The aspects related to fabrication techniques and working mechanism of sensors are comprehensively discussed. Furthermore, their unique mechanical and electrical properties and sustainable nature ensure seamless integration into biocomposites, allowing for real-time monitoring without compromising the material's properties. These sensors offer multi-parameter sensing capabilities, such as strain, pressure, humidity, temperature, and chemical exposure, allowing a comprehensive assessment of biocomposite health. Additionally, their durability and longevity in harsh conditions, along with wireless connectivity options, provide cost-effective and sustainable SHM solutions. As research in this field advances, ongoing efforts seek to enhance the sensitivity and selectivity of these sensors, optimizing their performance for real-world applications. This review highlights the significant advances, ongoing efforts to enhance the sensitivity and selectivity, and performance optimization of nanocarbon-based sensors along with their working mechanism in the field of SHM for smart biocomposites. The key challenges and future research perspectives facing the conversion of nanocarbons to smart biocomposites are also displayed.

2.
Langmuir ; 39(36): 12865-12877, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37639338

RESUMO

The MoS2-based reduced graphene oxide aerogel (MoS2-rGOA)-assisted organic transformation reactions are presented. MoS2-rGOA is used as a heterogeneous catalyst for the reduction of benzene derivatives such as benzaldehyde, nitrobenzene, and benzonitrile to benzyl alcohol, aniline, and benzamide and their derivatives, respectively, in green solvents (water/methanol) and green reducing agents (hydrazine hydrate having N2 and H2 as byproducts). The mechanistic features of the reduction pathway, substrate scope, and the best suitable conditions by varying the temperature, solvent, reducing agent, catalyst loading, time, etc. are optimized. All of the synthesized products are obtained in quantitative yield with purity and well characterized based on nuclear magnetic resonance analysis. Further, it is also observed that our catalyst is efficiently recyclable and works well checked up to 5 cycles.

3.
Appl Microbiol Biotechnol ; 104(16): 7187-7200, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32572575

RESUMO

We present a green synthesis of fluorescent carbon quantum dots (CQDs) by using red cabbage (rc) and a one-step hydrothermal approach. The rcCQDs were characterized by various techniques such as UV-visible spectroscopy, transmission electron microscopy (TEM), high-resolution TEM, Fourier-transform infrared spectroscopy, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy. The synthesized rcCQDs exhibited an average size of 3 nm, measured by TEM, blue fluorescence, and a quantum yield of 8.3%. The highest emission band was observed at approximately 402 nm when excited at 330 nm. The rcCQDs exhibited strong antioxidant activities by scavenging 61, 56, and 91% against 2, 2-diphenyl-1-picrylhydrazyl, hydroxyl, and potassium permanganate radicals, respectively. The scavenging activity of rcCQDs was comparable with that of standard antioxidant L-ascorbic acid. Cell Counting Kit (CCK)-8 assay depicted superior bio-compatibility and negligible cytotoxicity of rcCQDs on SH-SY5Y neuroblastoma cells. They were used as a fluorescent probe for bio-labeling of Escherichia coli and Staphylococcus aureus. The viabilities of the labeled bacterial cells were analyzed by AFM and UV-visible spectroscopy. Furthermore, the rcCQDs were utilized as a fluorescent ink, an alternative to pens, and maybe suitable for paints and varnish agents. This study provides detailed mechanistic insights into the antioxidant activity of as-synthesized rcCQDs, which suggest the practical applicability of CQDs for bio-medical applications. Key points • Carbon quantum dots were prepared from red cabbage using the hydrothermal method. • The scavenging activity of rcCQDs was evaluated for DPPH, OH, and KMnO4radicals. • The rcCQDs were used for the labeling of foodborne bacteria. • The rcCQDs could be utilized as fluorescent ink. Graphical abstract Schematic representation of CQDs prepared from red cabbage (rc) with multifunctional applications.


Assuntos
Antioxidantes/metabolismo , Brassica/química , Carbono/química , Química Verde , Pontos Quânticos/química , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Humanos , Neuroblastoma , Pontos Quânticos/metabolismo , Coloração e Rotulagem
4.
Chem Commun (Camb) ; 56(51): 6953-6956, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32436553

RESUMO

Nitrogen-doped functionalized graphene nanosheets (N-fGNS) were synthesized by a simple and green method and used for the visible-light-driven water splitting. Under visible light irradiation, N-fGNS produced H2 and O2 (1380 and 689 µM g-1 h-1, respectively) efficiently without co-catalysts. The excellent photocatalytic water splitting performance of N-fGNS is attributed to nitrogen doping and abundant surface defects as active sites.

5.
Sci Rep ; 9(1): 15084, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31636279

RESUMO

Visible-light-driven photocatalysts prepared using renewable resources are crucial but challenging to develop for the efficient degradation of organic pollutants, which is required to solve ever-increasing water deterioration issues. In this study, we report a visible-light-responsive photocatalyst for the efficient degradation of methylene blue (MB) as a model pollutant dye. Green-emissive carbon quantum dots (CQDs) were synthesized from pear juice via a facile, scalable, one-pot solvothermal process. The as-synthesized CQDs exhibit superior photocatalytic activity under visible-light irradiation owing to their efficient light absorption, electron transfer, and separation of photogenerated charge carriers, facilitating ~99.5% degradation of MB within 130 min. A possible mechanism for the photocatalysis is proposed on the basis of comprehensive active species trapping experiments. Furthermore, the CQDs were used in a specific sensitive assay for Fe(III) and ascorbic acid (AA), even with interference from other metal ions. The fluorescence emission of CQDs was "turned off" specifically upon binding of Fe(III) and "turned on" with AA. The prepared CQDs represent efficient photocatalysts and fluorescent probes that are not restricted by toxicity, cost, or lack of scalability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...