Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5576, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696888

RESUMO

Exosomal PD-L1 (exoPD-L1) has recently received significant attention as a biomarker predicting immunotherapeutic responses involving the PD1/PD-L1 pathway. However, current technologies for exosomal analysis rely primarily on bulk measurements that do not consider the heterogeneity found within exosomal subpopulations. Here, we present a nanoscale cytometry platform NanoEPIC, enabling phenotypic sorting and exoPD-L1 profiling from blood plasma. We highlight the efficacy of NanoEPIC in monitoring anti-PD-1 immunotherapy through the interrogation of exoPD-L1. NanoEPIC generates signature exoPD-L1 patterns in responders and non-responders. In mice treated with PD1-targeted immunotherapy, exoPD-L1 is correlated with tumor growth, PD-L1 burden in tumors, and the immune suppression of CD8+ tumor-infiltrating lymphocytes. Small extracellular vesicles (sEVs) with different PD-L1 expression levels display distinctive inhibitory effects on CD8 + T cells. NanoEPIC offers robust, high-throughput profiling of exosomal markers, enabling sEV subpopulation analysis. This platform holds the potential for enhanced cancer screening, personalized treatment, and therapeutic response monitoring.


Assuntos
Antígeno B7-H1 , Vesículas Extracelulares , Animais , Camundongos , Antígeno B7-H1/genética , Linfócitos T CD8-Positivos , Movimento Celular , Terapia de Imunossupressão
2.
Nat Rev Bioeng ; : 1-16, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37359771

RESUMO

Body-based biomolecular sensing systems, including wearable, implantable and consumable sensors allow comprehensive health-related monitoring. Glucose sensors have long dominated wearable bioanalysis applications owing to their robust continuous detection of glucose, which has not yet been achieved for other biomarkers. However, access to diverse biological fluids and the development of reagentless sensing approaches may enable the design of body-based sensing systems for various analytes. Importantly, enhancing the selectivity and sensitivity of biomolecular sensors is essential for biomarker detection in complex physiological conditions. In this Review, we discuss approaches for the signal amplification of biomolecular sensors, including techniques to overcome Debye and mass transport limitations, and selectivity improvement, such as the integration of artificial affinity recognition elements. We highlight reagentless sensing approaches that can enable sequential real-time measurements, for example, the implementation of thin-film transistors in wearable devices. In addition to sensor construction, careful consideration of physical, psychological and security concerns related to body-based sensor integration is required to ensure that the transition from the laboratory to the human body is as seamless as possible.

3.
Nano Lett ; 23(13): 5877-5885, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37040490

RESUMO

Nanoneedles are a useful tool for delivering exogenous biomolecules to cells. Although therapeutic applications have been explored, the mechanism regarding how cells interact with nanoneedles remains poorly studied. Here, we present a new approach for the generation of nanoneedles, validated their usefulness in cargo delivery, and studied the underlying genetic modulators during delivery. We fabricated arrays of nanoneedles based on electrodeposition and quantified its efficacy of delivery using fluorescently labeled proteins and siRNAs. Notably, we revealed that our nanoneedles caused the disruption of cell membranes, enhanced the expression of cell-cell junction proteins, and downregulated the expression of transcriptional factors of NFκB pathways. This perturbation trapped most of the cells in G2 phase, in which the cells have the highest endocytosis activities. Taken together, this system provides a new model for the study of interactions between cells and high-aspect-ratio materials.


Assuntos
Endocitose , Proteínas , Membrana Celular
4.
Angew Chem Int Ed Engl ; 62(20): e202213567, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36894506

RESUMO

Reagent-free electronic biosensors capable of analyzing disease markers directly in unprocessed body fluids will enable the development of simple & affordable devices for personalized healthcare monitoring. Here we report a powerful and versatile nucleic acid-based reagent-free electronic sensing system. The signal transduction is based on the kinetics of an electrode-tethered molecular pendulum-a rigid double stranded DNA with one of the strands displaying an analyte-binding aptamer and the other featuring a redox probe-that exhibits field-induced transport modulated by receptor occupancy. Using chronoamperometry, which enables the sensor to circumvent the conventional Debye length limitation, the binding of an analyte can be monitored as these species increase the hydrodynamic drag. The sensing platform demonstrates a low femtomolar quantification limit and minimal cross-reactivity in analyzing cardiac biomarkers in whole blood collected from patients with chronic heart failure.


Assuntos
Aptâmeros de Nucleotídeos , Ácidos Nucleicos , Humanos , Aptâmeros de Nucleotídeos/química , DNA/química , Eletrodos , Biomarcadores
5.
Biosens Bioelectron ; 226: 115115, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36746023

RESUMO

Wearable biosensors (WB) are currently attracting considerable interest for rapid detection and monitoring of biomarkers including metabolites, protein, and pathogen in bodily fluids (e.g., sweat, saliva, tears, and interstitial fluid). Another branch of WB termed wearable nucleic acid testing (NAT) is blossoming thanks to the development of microfluidic technology and isothermal nucleic acid amplification technique (iNAAT); however, there are only few reports on this. The wearable NAT is an emerging field of point-of-care (POC) diagnostics, and holds the promise for time-saving self-diagnosis, and evidence-based surveillance of infectious diseases in remote or low-resource settings. The use of wearable NAT can also be advanced to include molecular diagnosis, the identification of cancer biomarkers, genetic abnormalities, and other aspects. The wearable NAT provides the potential for evidence-based surveillance of infectious diseases when combined with internet connectivity and App software. To make the wearable NAT accessible to the end users, however, improvements must be made to the fabrication, cost, speed, sensitivity, specificity, sampling, iNAAT, analyzer, and a few other features. So, in this paper, we looked at the wearable NAT's most recent development, identified its difficulties, and defined its potential for managing infectious diseases quickly in the future. This is the wearable NAT review's first effort. We expect that this article will provide the concise resources needed to develop and deploy an efficient wearable NAT system.


Assuntos
Técnicas Biossensoriais , Doenças Transmissíveis , Ácidos Nucleicos , Dispositivos Eletrônicos Vestíveis , Humanos , Testes Imediatos , Técnicas de Amplificação de Ácido Nucleico/métodos , Sistemas Automatizados de Assistência Junto ao Leito
6.
J Am Chem Soc ; 144(40): 18338-18349, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36173381

RESUMO

The development of robust biosensing strategies that can be easily implemented in everyday life remains a challenge for the future of modern biosensor research. While several reagentless approaches have attempted to address this challenge, they often achieve user-friendliness through sacrificing sensitivity or universality. While acceptable for certain applications, these trade-offs hinder the widespread adoption of reagentless biosensing technologies. Here, we report a novel approach to reagentless biosensing that achieves high sensitivity, rapid detection, and universality using the SARS-CoV-2 virus as a model target. Universality is achieved by using nanoscale molecular pendulums, which enables reagentless electrochemical biosensing through a variable antibody recognition element. Enhanced sensitivity and rapid detection are accomplished by incorporating the coffee-ring phenomenon into the sensing scheme, allowing for target preconcentration on a ring-shaped electrode. Using this approach, we obtained limits of detection of 1 fg/mL and 20 copies/mL for the SARS-CoV-2 nucleoproteins and viral particles, respectively. In addition, clinical sample analysis showed excellent agreement with Ct values from PCR-positive SARS-CoV-2 patients.


Assuntos
Técnicas Biossensoriais , COVID-19 , COVID-19/diagnóstico , Eletrodos , Humanos , Nucleoproteínas , SARS-CoV-2/genética
7.
J Am Chem Soc ; 143(14): 5281-5294, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33793215

RESUMO

Portable devices capable of rapid disease detection and health monitoring are crucial to decentralizing diagnostics from clinical laboratories to the patient point-of-need. Although technologies have been developed targeting this challenge, many require the use of reporter molecules or reagents that complicate the automation and autonomy of sensors. New work in the field has targeted reagentless approaches to enable breakthroughs that will allow personalized monitoring of a wide range of biomarkers on demand. This Perspective focuses on the ability of reagentless platforms to revolutionize the field of sensing by allowing rapid and real-time analysis in resource-poor settings. First, we will highlight advantages of reagentless sensing techniques, specifically electrochemical detection strategies. Advances in this field, including the development of wearable and in situ sensors capable of real-time monitoring of biomarkers such as nucleic acids, proteins, viral particles, bacteria, therapeutic agents, and metabolites, will be discussed. Reagentless platforms which allow for wash-free, calibration free-detection with increased dynamic range are highlighted as a key technological advance for autonomous sensing applications. Furthermore, we will highlight remaining challenges which must be overcome to enable widespread use of reagentless devices. Finally, future prospects and potential breakthroughs in precision medicine that will arise as a result of further development of reagentless sensing approaches are discussed.


Assuntos
Monitorização Fisiológica/métodos , Biomarcadores/metabolismo , Humanos , Monitorização Fisiológica/instrumentação
8.
Nat Chem ; 13(5): 428-434, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33686229

RESUMO

The development of reagentless sensors that can detect molecular analytes in biological fluids could enable a broad range of applications in personalized health monitoring. However, only a limited set of molecular inputs can currently be detected using reagentless sensors. Here, we report a sensing mechanism that is compatible with the analysis of proteins that are important physiological markers of stress, allergy, cardiovascular health, inflammation and cancer. The sensing method is based on the motion of an inverted molecular pendulum that exhibits field-induced transport modulated by the presence of a bound analyte. We measure the sensor's electric field-mediated transport using the electron-transfer kinetics of an attached reporter molecule. Using time-resolved electrochemical measurements that enable unidirectional motion of our sensor, the presence of an analyte bound to our sensor complex can be tracked continuously in real time. We show that this sensing approach is compatible with making measurements in blood, saliva, urine, tears and sweat and that the sensors can collect data in situ in living animals.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Animais , Humanos , Camundongos , Modelos Moleculares
9.
J Am Chem Soc ; 143(4): 1722-1727, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33481575

RESUMO

The development of new methods for direct viral detection using streamlined and ideally reagent-free assays is a timely and important, but challenging, problem. The challenge of combatting the COVID-19 pandemic has been exacerbated by the lack of rapid and effective methods to identify viral pathogens like SARS-CoV-2 on-demand. Existing gold standard nucleic acid-based approaches require enzymatic amplification to achieve clinically relevant levels of sensitivity and are not typically used outside of a laboratory setting. Here, we report reagent-free viral sensing that directly reads out the presence of viral particles in 5 minutes using only a sensor-modified electrode chip. The approach relies on a class of electrode-tethered sensors bearing an analyte-binding antibody displayed on a negatively charged DNA linker that also features a tethered redox probe. When a positive potential is applied, the sensor is transported to the electrode surface. Using chronoamperometry, the presence of viral particles and proteins can be detected as these species increase the hydrodynamic drag on the sensor. This report is the first virus-detecting assay that uses the kinetic response of a probe/virus complex to analyze the complexation state of the antibody. We demonstrate the performance of this sensing approach as a means to detect, within 5 min, the presence of the SARS-CoV-2 virus and its associated spike protein in test samples and in unprocessed patient saliva.


Assuntos
Técnicas Biossensoriais/métodos , Teste para COVID-19/métodos , COVID-19/virologia , Técnicas Eletroquímicas/métodos , SARS-CoV-2/isolamento & purificação , Vírion/isolamento & purificação , Técnicas Biossensoriais/instrumentação , Teste para COVID-19/instrumentação , Técnicas Eletroquímicas/instrumentação , Eletrodos , Humanos , Testes Imediatos , Saliva/virologia
10.
ACS Nano ; 14(5): 5324-5336, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32369335

RESUMO

Dynamic modulation of cellular phenotypes between the epithelial and mesenchymal states-the epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET)-plays an important role in cancer progression. Nanoscale topography of culture substrates is known to affect the migration and EMT of cancer cells. However, existing platforms heavily rely on simple geometries such as grooved lines or cylindrical post arrays, which may oversimplify the complex interaction between cells and nanotopography in vivo. Here, we use electrodeposition to construct finely controlled surfaces with biomimetic fractal nanostructures as a means of examining the roles of nanotopography during the EMT/MET process. We found that nanostructures in the size range of 100 to 500 nm significantly promote MET for invasive breast and prostate cancer cells. The "METed" cells acquired distinct expression of epithelial and mesenchymal markers, displayed perturbed morphologies, and exhibited diminished migration and invasion, even after the removal of a nanotopographical stimulus. The phosphorylation of GSK-3 was decreased, which further tuned the expression of Snail and modulated the EMT/MET process. Our findings suggest that invasive cancer cells respond to the geometries and dimensions of complex nanostructured architectures.


Assuntos
Quinase 3 da Glicogênio Sintase , Nanoestruturas , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Humanos , Masculino
11.
Sci Total Environ ; 730: 138996, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32371230

RESUMO

According to data compiled by researchers at Johns Hopkins University in Baltimore, Maryland, more than two and half million cases of coronavirus disease 2019 (COVID-19), caused by a newly discovered virus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have been confirmed on April 20, 2020 (Nature, 2020b). Since the emergence of this infectious disease in Asia (Wuhan, China) late last year, it has been subsequently span to every continent of the world except Antarctica (Rodríguez-Morales et al., 2020). Along with a foothold in every country, the current disease pandemic is disrupting practically every aspect of life all over the world. As the outbreak are continuing to evolve, several research activities have been conducted for better understanding the origin, functions, treatments, and preventions of this novel coronavirus. This review will be a summa of the key features of novel coronavirus (nCoV), the virus causing disease 2019 and the present epidemic situation worldwide up to April 20, 2020. It is expected that this record will play an important role to take more preventive measures for overcoming the challenges faced during this current pandemic.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Pandemias , Pneumonia Viral , COVID-19 , Saúde Global , SARS-CoV-2
12.
Angew Chem Int Ed Engl ; 59(7): 2554-2564, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31332937

RESUMO

Circulating tumour nucleic acids (ctNAs) are released from tumours cells and can be detected in blood samples, providing a way to track tumors without requiring a tissue sample. This "liquid biopsy" approach has the potential to replace invasive, painful, and costly tissue biopsies in cancer diagnosis and management. However, a very sensitive and specific approach is required to detect relatively low amounts of mutant sequences linked to cancer because they are masked by the high levels of wild-type sequences. This review discusses high-performance nucleic acid biosensors for ctNA analysis in patient samples. We compare sequencing- and amplification-based methods to next-generation sensors for ctDNA and ctRNA (including microRNA) profiling, such as electrochemical methods, surface plasmon resonance, Raman spectroscopy, and microfluidics and dielectrophoresis-based assays. We present an overview of the analytical sensitivity and accuracy of these methods as well as the biological and technical challenges they present.


Assuntos
Biomarcadores Tumorais/análise , Técnicas Biossensoriais , DNA Tumoral Circulante/análise , Neoplasias/diagnóstico por imagem , Humanos
13.
ACS Appl Mater Interfaces ; 11(44): 41030-41037, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31600052

RESUMO

Microenvironmental factors play critical roles in regulating stem cell fate, providing a rationale to engineer biomimetic microenvironments that facilitate rapid and effective stem cell differentiation. Three-dimensional (3D) hierarchical microarchitectures have been developed to enable rapid neural differentiation of multipotent human mesenchymal stromal cells (HMSCs) via mechanotransduction. However, low cell viability during long-term culture and poor cell recovery efficiency from the architectures were also observed. Such problems hinder further applications of the architectures in stem cell differentiation. Here, we present improved 3D nanostructured microarchitectures functionalized with cell-adhesion-promoting arginylglycylaspartic acid (RGD) peptides. These RGD-functionalized architectures significantly upregulated long-term cell viability and facilitated effective recovery of differentiated cells from the architectures while maintaining high differentiation efficiency. Efficient recovery of highly viable differentiated cells enabled the downstream analysis of morphology and protein expression to be performed. Remarkably, even after the removal of the mechanical stimulus provided by the 3D microarchitectures, the recovered HMSCs showed a neuron-like elongated morphology for 10 days and consistently expressed microtubule-associated protein 2, a mature neural marker. RGD-functionalized nanostructured microarchitectures hold great potential to guide effective differentiation of highly viable stem cells.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Mecanotransdução Celular/efeitos dos fármacos , Nanoestruturas/química , Oligopeptídeos/farmacologia , Técnicas de Cultura de Células/métodos , Sobrevivência Celular/efeitos dos fármacos , Ouro/química , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Nanoestruturas/toxicidade , Oligopeptídeos/química , Impressão Tridimensional
14.
Angew Chem Int Ed Engl ; 58(41): 14519-14523, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31389126

RESUMO

In living systems, interfacial molecular interactions control many biological processes. New stimuli-responsive strategies are desired to provide versatile model systems that can regulate cell behavior in vitro. Described here are potential-responsive surfaces that control cell adhesion and release as well as stem cell differentiation. Cell adhesion can be modulated dynamically by applying negative and positive potentials to surfaces functionalized with tailored monolayers. This process alters cell morphology and ultimately controls behavior and the fate of the cells. Cells can be detached from the electrode surface as intact clusters with different geometries using electrochemical potentials. Importantly, morphological changes during adhesion guide stem cell differentiation. The higher accessibility of the peptide under a positive applied potential causes phenotypic changes in the cells that are hallmarks of osteogenesis, whereas lower accessibility of the peptide promoted by negative potentials leads to adipogenesis.


Assuntos
Fibroblastos/fisiologia , Animais , Biomarcadores/metabolismo , Adesão Celular , Diferenciação Celular , Linhagem Celular , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Fenômenos Eletrofisiológicos , Regulação da Expressão Gênica , Camundongos , Osteogênese/fisiologia , Osteonectina/genética , Osteonectina/metabolismo , Osteopontina/genética , Osteopontina/metabolismo , Propriedades de Superfície
15.
Nano Lett ; 18(11): 7188-7193, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30335391

RESUMO

Cell morphology and geometry affect cellular processes such as stem cell differentiation, suggesting that these parameters serve as fundamental regulators of biological processes within the cell. Hierarchical architectures featuring micro- and nanotopographical features therefore offer programmable systems for stem cell differentiation. However, a limited number of studies have explored the effects of hierarchical architectures due to the complexity of fabricating systems with rationally tunable micro- and nanostructuring. Here, we report three-dimensional (3D) nanostructured microarchitectures that efficiently regulate the fate of human mesenchymal stem cells (hMSCs). These nanostructured architectures strongly promote cell alignment and efficient neurogenic differentiation where over 85% of hMSCs express microtubule-associated protein 2 (MAP2), a mature neural marker, after 7 days of culture on the nanostructured surface. Remarkably, we found that the surface morphology of nanostructured surface is a key factor that promotes neurogenesis and that highly spiky structures promote more efficient neuronal differentiation. Immunostaining and gene expression profiling revealed significant upregulation of neuronal markers compared to unpatterned surfaces. These findings suggest that the 3D nanostructured microarchitectures can play a critical role in defining stem cell behavior.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais , Nanoestruturas/química , Neurônios , Técnicas de Cultura de Células/métodos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fatores de Tempo
16.
Nano Lett ; 18(10): 6222-6228, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30188727

RESUMO

Cytotoxic chemotherapeutics are important tools for the clinical treatment of a variety of solid tumors. However, their use is often complicated by multidrug resistance that can develop in patients, limiting the potencies of these agents. New strategies are needed to provide versatile systems that can respond to and disable resistance mechanisms. We demonstrate the use of a new family of materials, programmable metal/semiconductor nanostructures, for drug delivery and mRNA sensing in drug-resistant cells. These materials are composed of a central core gold nanoparticle surrounded by a layer of DNA-capped quantum dots. The modularity of these "core-satellite" assemblies allows for the construction of superstructures with controlled size and the incorporation of multiple functionalities for drug delivery. The DNA sequence within the nanoparticle specifically binds to an mRNA encoding an important drug resistance factor, MRP1, inside cancer cells, releasing a potent anticancer drug doxorubicin. This event triggers a turn-on fluorescence emission along with a downregulation of the MRP1 drug efflux pump, a main resistance factor for doxorubicin, yielding a remarkable improvement in therapeutic efficacy against drug-resistant cancer cells. This work paves the way for the development of programmable materials with multiple synergistic functionalities for biomedical applications.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Pontos Quânticos/uso terapêutico , Sistemas de Liberação de Medicamentos , Técnicas de Transferência de Genes , Ouro/química , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Neoplasias/genética , Neoplasias/patologia , Pontos Quânticos/química , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/uso terapêutico , Semicondutores
17.
ACS Sens ; 3(9): 1765-1772, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30080023

RESUMO

The development of new tools for tracking the activity of human DNA methyltransferases is an important goal given the role of this enzyme as a cancer biomarker and epigenetic modulator. However, analysis of the human DNA (cytosine-5)-methyltransferase 1 (Dnmt1) activity is challenging, especially in crude samples, because of the low activity and large size of the enzyme. Here, we report a new approach to Dnmt analysis that combines nanostructured electrodes with a digest-and-amplify strategy that directly monitors Dnmt1 activity with high sensitivity. Nanostructured electrodes are required for the function of the assay to promote the accessibility of the electrode for human Dnmt1. Moreover, DNA-templated deposition of silver nanoparticles (for signal amplification) is combined with DNA Exonuclease I digestion to yield optimal target-to-control signals. We achieve high sensitivity for the detection of human Dnmt1, and particularly Dnmt1 from crude cell lysates. Specifically, the detection limit of our electrochemical assay is 20 pM, which is 2 orders of magnitude lower than previously reported methods. In crude lysates, we detected Dnmt1 from as few as five colorectal cancer cells (HCT116). With biopsy samples, we were able to distinguish colorectal tumor tissue from healthy adjacent tissue using only 10 µg of sample. The strategy enables analysis of an important marker underlying the epigenetic basis of cancerous transformation.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/análise , Técnicas Eletroquímicas/métodos , Ensaios Enzimáticos/métodos , Carcinoma/enzimologia , Linhagem Celular Tumoral , Neoplasias Colorretais/enzimologia , Técnicas Eletroquímicas/instrumentação , Ensaios Enzimáticos/instrumentação , Humanos , Limite de Detecção , Nanopartículas Metálicas/química , Microeletrodos , Prata/química
18.
Lab Chip ; 18(13): 1928-1935, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29881833

RESUMO

Integrated devices for automated nucleic acid testing (NAT) are critical for infectious disease diagnosis to be performed outside of centralized laboratories. The gold standard methods for NAT are enzymatic amplification methods like the polymerase chain reaction that typically require expensive equipment and highly-trained personnel, limiting use in low-resource settings. A low-cost, integrated, rapid, portable and user-friendly point-of-care (POC) nucleic acid diagnostic device will improve the accessibility of NAT. Here, we present a fully integrated and simple-to-use POC device operated by a passive fluidic method that is able to perform a sequential multi-step assay to detect viral nucleic acids in blood. This simple device enabled the rapid detection of hepatitis C virus in blood in approximately 30 minutes with minimal sample handling by the user.


Assuntos
Dispositivos Lab-On-A-Chip , Técnicas de Amplificação de Ácido Nucleico/métodos , Sistemas Automatizados de Assistência Junto ao Leito , RNA Viral/sangue , Desenho de Equipamento , Hepacivirus/genética , Hepatite C/diagnóstico , Humanos , Ácidos Nucleicos/sangue
19.
Angew Chem Int Ed Engl ; 57(14): 3711-3716, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29389071

RESUMO

The analysis of circulating tumour nucleic acids (ctNAs) provides a minimally invasive way to assess the mutational spectrum of a tumour. However, effective and practical methods for analyzing this emerging class of markers are lacking. Analysis of ctNAs using a sensor-based approach has notable challenges, as it is vital to differentiate nucleic acids from normal cells from mutation-bearing sequences emerging from tumours. Moreover, many genes related to cancer have dozens of different mutations. Herein, we report an electrochemical approach that directly detects genes with mutations in patient serum by using combinatorial probes (CPs). The CPs enable detection of all of the mutant alleles derived from the same part of the gene. As a proof of concept, we analyze mutations of the EGFR gene, which has more than 40 clinically relevant alterations that include deletions, insertions, and point mutations. Our CP-based approach accurately detects mutant sequences directly in patient serum.


Assuntos
Biomarcadores Tumorais/sangue , Ácidos Nucleicos Livres/sangue , Técnicas Biossensoriais/métodos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Análise Mutacional de DNA/métodos , Sondas de DNA/química , Técnicas Eletroquímicas/métodos , Genes erbB-1 , Ensaios de Triagem em Larga Escala/métodos , Humanos , Neoplasias Pulmonares/diagnóstico , Mutação Puntual , Sensibilidade e Especificidade , Propriedades de Superfície
20.
Nano Lett ; 17(2): 1289-1295, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28075594

RESUMO

High-curvature electrodes facilitate rapid and sensitive detection of a broad class of molecular analytes. These sensors have reached detection limits not attained using bulk macroscale materials. It has been proposed that immobilized DNA probes are displayed at a high deflection angle on the sensor surface, which allows greater accessibility and more efficient hybridization. Here we report the first use of all-atom molecular dynamics simulations coupled with electrochemical experiments to explore the dynamics of single-stranded DNA immobilized on high-curvature versus flat surfaces. We find that high-curvature structures suppress DNA probe aggregation among adjacent probes. This results in conformations that are more freely accessed by target molecules. The effect observed is amplified in the presence of highly charged cations commonly used in electrochemical biosensing. The results of the simulations agree with experiments that measure the degree of hybridization in the presence of mono-, di-, and trivalent cations. On high-curvature structures, hybridization current density increases as positive charge increases, whereas on flat electrodes, the trivalent cations cause aggregation due to electrostatic overscreening, which leads to decreased current density and less sensitive detection.


Assuntos
Técnicas Biossensoriais/métodos , Sondas de DNA/química , DNA de Cadeia Simples/química , Nanoestruturas/química , Cátions/química , Técnicas Eletroquímicas , Ouro/química , Humanos , Ácidos Nucleicos Imobilizados/química , Microeletrodos , Simulação de Dinâmica Molecular , Hibridização de Ácido Nucleico , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...