Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(7): e0292413, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38959229

RESUMO

Salmonella infections pose a significant global public health concern due to the substantial expenses associated with monitoring, preventing, and treating the infection. In this study, we explored the core proteome of Salmonella to design a multi-epitope vaccine through Subtractive Proteomics and immunoinformatics approaches. A total of 2395 core proteins were curated from 30 different isolates of Salmonella (strain NZ CP014051 was taken as reference). Utilizing the subtractive proteomics approach on the Salmonella core proteome, Curlin major subunit A (CsgA) was selected as the vaccine candidate. csgA is a conserved gene that is related to biofilm formation. Immunodominant B and T cell epitopes from CsgA were predicted using numerous immunoinformatics tools. T lymphocyte epitopes had adequate population coverage and their corresponding MHC alleles showed significant binding scores after peptide-protein based molecular docking. Afterward, a multi-epitope vaccine was constructed with peptide linkers and Human Beta Defensin-2 (as an adjuvant). The vaccine could be highly antigenic, non-toxic, non-allergic, and have suitable physicochemical properties. Additionally, Molecular Dynamics Simulation and Immune Simulation demonstrated that the vaccine can bind with Toll Like Receptor 4 and elicit a robust immune response. Using in vitro, in vivo, and clinical trials, our findings could yield a Pan-Salmonella vaccine that might provide protection against various Salmonella species.


Assuntos
Biologia Computacional , Epitopos de Linfócito T , Proteômica , Salmonella , Proteômica/métodos , Epitopos de Linfócito T/imunologia , Salmonella/imunologia , Salmonella/genética , Biologia Computacional/métodos , Humanos , Genômica/métodos , Simulação de Acoplamento Molecular , Vacinas contra Salmonella/imunologia , Animais , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Simulação de Dinâmica Molecular , Infecções por Salmonella/prevenção & controle , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Epitopos de Linfócito B/imunologia , Imunoinformática
2.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38877887

RESUMO

Neurodegenerative diseases, such as Alzheimer's disease, pose a significant global health challenge with their complex etiology and elusive biomarkers. In this study, we developed the Alzheimer's Identification Tool (AITeQ) using ribonucleic acid-sequencing (RNA-seq), a machine learning (ML) model based on an optimized ensemble algorithm for the identification of Alzheimer's from RNA-seq data. Analysis of RNA-seq data from several studies identified 87 differentially expressed genes. This was followed by a ML protocol involving feature selection, model training, performance evaluation, and hyperparameter tuning. The feature selection process undertaken in this study, employing a combination of four different methodologies, culminated in the identification of a compact yet impactful set of five genes. Twelve diverse ML models were trained and tested using these five genes (CNKSR1, EPHA2, CLSPN, OLFML3, and TARBP1). Performance metrics, including precision, recall, F1 score, accuracy, Matthew's correlation coefficient, and receiver operating characteristic area under the curve were assessed for the finally selected model. Overall, the ensemble model consisting of logistic regression, naive Bayes classifier, and support vector machine with optimized hyperparameters was identified as the best and was used to develop AITeQ. AITeQ is available at: https://github.com/ishtiaque-ahammad/AITeQ.


Assuntos
Doença de Alzheimer , Aprendizado de Máquina , Doença de Alzheimer/genética , Humanos , Algoritmos , Perfilação da Expressão Gênica/métodos , Transcriptoma , Biologia Computacional/métodos , RNA-Seq/métodos
3.
Commun Biol ; 7(1): 500, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664512

RESUMO

Ethnicity has a significant role in shaping the composition of the gut microbiome, which has implications in human physiology. This study intends to investigate the gut microbiome of Bengali people as well as several indigenous ethnicities (Chakma, Marma, Khyang, and Tripura) residing in the Chittagong Hill Tracts areas of Bangladesh. Following fecal sample collection from each population, part of the bacterial 16 s rRNA gene was amplified and sequenced using Illumina NovaSeq platform. Our findings indicated that Bangladeshi gut microbiota have a distinct diversity profile when compared to other countries. We also found out that Bangladeshi indigenous communities had a higher Firmicutes to Bacteroidetes ratio than the Bengali population. The investigation revealed an unclassified bacterium that was differentially abundant in Bengali samples while the genus Alistipes was found to be prevalent in Chakma samples. Further research on these bacteria might help understand diseases associated with these populations. Also, the current small sample-sized pilot study hindered the comprehensive understanding of the gut microbial diversity of the Bangladeshi population and its potential health implications. However, our study will help establish a basic understanding of the gut microbiome of the Bangladeshi population.


Assuntos
Microbioma Gastrointestinal , População do Sul da Ásia , Adulto , Feminino , Humanos , Masculino , Bactérias/genética , Bactérias/classificação , Bangladesh , Etnicidade , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Povos Indígenas , RNA Ribossômico 16S/genética
4.
Heliyon ; 9(11): e21466, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034688

RESUMO

Mycoplasma pneumoniae is a significant causative agent of community-acquired pneumonia, causing acute inflammation in the upper and lower respiratory tract as well as extrapulmonary syndromes. In particular, the elderly and infants are at greater risk of developing severe, life-threatening pneumonia caused by M. pneumoniae. Yet, the global increase in antimicrobial resistance against antibiotics for the treatment of M. pneumoniae infection highlights the urgent need to explore novel drug targets. To this end, bioinformatics approaches, such as subtractive genomics, can be employed to identify specific metabolic pathways and essential proteins unique to the pathogen that could be potential targets for new drugs. In this study, we implemented a subtractive genomics approach to identify 61 metabolic pathways and 42 essential proteins that are unique to M. pneumoniae. A subsequent screening in the DrugBank database revealed three druggable proteins with similarity to FDA-approved small-molecule drugs, and finally, the compound CHEBI:97093 was identified as a promising novel putative drug target. These findings can provide crucial insights for the development of highly effective drugs that selectively inhibit the pathogen-specific metabolic pathways, leading to better management and treatment of M. pneumoniae infections.

5.
PLoS One ; 18(6): e0286917, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37319252

RESUMO

GRIN2A is a gene that encodes NMDA receptors found in the central nervous system and plays a pivotal role in excitatory synaptic transmission, plasticity and excitotoxicity in the mammalian central nervous system. Changes in this gene have been associated with a spectrum of neurodevelopmental disorders such as epilepsy. Previous studies on GRIN2A suggest that non-synonymous single nucleotide polymorphisms (nsSNPs) can alter the protein's structure and function. To gain a better understanding of the impact of potentially deleterious variants of GRIN2A, a range of bioinformatics tools were employed in this study. Out of 1320 nsSNPs retrieved from the NCBI database, initially 16 were predicted as deleterious by 9 tools. Further assessment of their domain association, conservation profile, homology models, interatomic interaction, and Molecular Dynamic Simulation revealed that the variant I463S is likely to be the most deleterious for the structure and function of the protein. Despite the limitations of computational algorithms, our analyses have provided insights that can be a valuable resource for further in vitro and in vivo research on GRIN2A-associated diseases.


Assuntos
Epilepsia , Simulação de Dinâmica Molecular , Humanos , Polimorfismo de Nucleotídeo Único , Algoritmos , Bases de Dados Factuais , Biologia Computacional
6.
J Biomol Struct Dyn ; 41(24): 15150-15164, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36907599

RESUMO

Insulin receptor substrate 1(IRS1) is a signaling adapter protein encoded by the IRS1 gene. This protein delivers signals from insulin and insulin-like growth factor-1(IGF-1) receptors to the phosphatidylinositol 3-kinases (P13K)/protein kinase B (Akt) and Extracellular signal-regulated kinases (Erk) - Mitogen-activated protein (MAP) kinase pathways, which regulate particular cellular processes. Mutations in this gene have been linked to type 2 diabetes mellitus, a heightened risk of insulin resistance, and an increased likelihood of developing a number of different malignancies. The structure and function of IRS1 could be severely compromised as a result of single nucleotide polymorphism (SNP) type genetic variants. In this study, we focused on identification of the most harmful non-synonymous SNPs (nsSNPs) of the IRS1 gene as well as prediction of their structural and functional consequences. Six different algorithms made the initial prediction that 59 of the 1142 IRS1 nsSNPs would have a negative impact on the protein structure. In-depth evaluations detected 26 nsSNPs located inside the functional domains of IRS1. Following that, 16 nsSNPs were identified as more harmful based on conservation profile, hydrophobic interaction, surface accessibility, homology modelling, and inter-atomic interactions. Following an in-depth analysis of protein stability, M249T (rs373826433), I223T (rs1939785175) and V204G (rs1574667052) were identified as three most deleterious SNPs and were subjected to molecular dynamics simulation for further insights. These findings will help us understand the implications for disease susceptibility, cancer progression, and the efficacy of therapeutic development against IRS1 gene mutants.Communicated by Ramaswamy H. Sarma.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Diabetes Mellitus Tipo 2/genética , Transdução de Sinais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
7.
J Biomol Struct Dyn ; 41(24): 14730-14743, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36927394

RESUMO

Vibrio cholerae, the etiological agent of cholera, causes dehydration and severe diarrhea with the production of cholera toxin. Due to the acquired antibiotic resistance, V. cholerae has drawn attention to the establishment of novel medications to counteract the virulence and viability of the pathogen. Centella asiatica is a medicinal herb native to Bangladesh that has a wide range of medicinal and ethnobotanical applications including anti-bacterial properties. In the present investigation, a total of 25 bioactive phytochemicals of C. asiatica have been screened virtually through molecular docking, ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) analyses, and molecular dynamics simulation. Our results revealed four lead compounds as Viridiflorol (-8.7 Kcal/mol), Luteolin (-8.1 Kcal/mol), Quercetin (-8.0 Kcal/mol) and, Geranyl acetate (-7.1 Kcal/mol) against V. cholerae Toxin co-regulated pilus virulence regulatory protein (ToxT). All the lead compounds have been found to possess favorable pharmacokinetic, pharmacodynamics, and molecular dynamics properties. Toxicity analysis revealed satisfactory results with no major side effects. Molecular dynamics simulation was performed for 100 ns that revealed noteworthy conformational stability and structural compactness for all the lead compounds, especially for Quercetin. Target class prediction unveiled enzymes in most of the cases and some experimental and investigational drugs were found as structurally similar analogs of the lead compounds. These findings could aid in the development of novel therapeutics targeting Cholera disease and we strongly recommend in vitro trials of our experimental findings.Communicated by Ramaswamy H. Sarma.


Assuntos
Centella , Cólera , Vibrio cholerae , Humanos , Cólera/tratamento farmacológico , Cólera/microbiologia , Simulação de Dinâmica Molecular , Centella/metabolismo , Quercetina/farmacologia , Simulação de Acoplamento Molecular , Proteínas de Bactérias/metabolismo , Toxina da Cólera/metabolismo , Toxina da Cólera/farmacologia
8.
Anim Biotechnol ; 34(7): 2007-2016, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35446730

RESUMO

CatSper1 and TNP2 genes are known to affect semen quality and fertility parameters, including sperm motility and maturation. However, studies are yet to examine the genes in indigenous and crossbred cattle in Bangladesh. Therefore, this study was conducted to determine the genetic variants of CatSper1 and TNP2 in indigenous and crossbred cattle in Bangladesh. Blood samples were collected from 130 indigenous and 70 crossbred (Holstein Friesian × indigenous) cattle. Nucleotide variation was evaluated by PCR-RFLP and sequencing. The results of the study showed that the indigenous cattle possessed only TT genotype (1.0), whereas the crossbreds possessed both TT (0.91) and CT (0.09) genotypes, which was validated by gene sequencing. Additionally, the CatSper1 was conserved in both the indigenous and crossbred cattle, suggesting good semen quality and fertility. However, the TNP2 was conserved in the indigenous breeds and mostly conserved in the crossbreds. The findings of this study reveal the diversity of CatSper1 and TNP2 genes in indigenous and crossbred cattle.


Assuntos
Análise do Sêmen , Motilidade dos Espermatozoides , Bovinos/genética , Masculino , Animais , Motilidade dos Espermatozoides/genética , Bangladesh , Fertilidade/genética , Genótipo
9.
Sci Rep ; 12(1): 21070, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473896

RESUMO

Developing a common medication strategy for disease control and management could be greatly beneficial. Investigating the differences between diseased and healthy states using differentially expressed genes aids in understanding disease pathophysiology and enables the exploration of protein-drug interactions. This study aimed to find the most common genes in diarrhea-causing bacteria such as Salmonella enterica serovar Typhimurium, Campylobacter jejuni, Escherichia coli, Shigella dysenteriae (CESS) to find new drugs. Thus, differential gene expression datasets of CESS were screened through computational algorithms and programming. Subsequently, hub and common genes were prioritized from the analysis of extensive protein-protein interactions. Binding predictions were performed to identify the common potential therapeutic targets of CESS. We identified a total of 827 dysregulated genes that are highly linked to CESS. Notably, no common gene interaction was found among all CESS bacteria, but we identified 3 common genes in both Salmonella-Escherichia and Escherichia-Campylobacter infections. Later, out of 73 protein complexes, molecular simulations confirmed 5 therapeutic candidates from the CESS. We have developed a new pipeline for identifying therapeutic targets for a common medication strategy against CESS. However, further wet-lab validation is needed to confirm their effectiveness.


Assuntos
Expressão Gênica
10.
Mol Biotechnol ; 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357534

RESUMO

Monkeypox Virus (MPXV), the causative agent of Monkeypox (MPX) disease, is an emerging zoonotic pathogen spreading in different endemic and non-endemic nations and creating outbreaks. MPX treatment mainly includes Cidofovir and Tecovirimat but they have several side effects and solely depending on these drugs may promote the emergence of drug-resistant variants. Hence, new drugs are required to control the spread of the disease. In this study, we explored the MPXV proteome to suggest repurposable drugs. DrugBank screening revealed drugs such as Brinzolamide, Dorzolamide, Methazolamide, Zidovudine, Gemcitabine, Hydroxyurea, Fludarabine, and Tecovirimat as controls. Structural analogs of these compounds were extracted from ChEMBL Database. After Molecular docking and Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET)-based screening, we identified Zidovudine (binding affinity-5.9 kcal/mol) and a Harmala alkaloid (2S,4R)-4-(9H-Pyrido[3,4-b]indol-1-yl)-1,2,4-butanetriol (binding affinity - 6.6 kcal/mol) against L2R receptor (Thymidine Kinase). Moreover, Fludarabine (binding affinity - 6.4 kcal/mol) and 5'-Dehydroadenosine (binding affinity - 6.4 kcal/mol) can strongly interact with the I4L receptor (Ribonucleotide reductase large subunit R1). Molecular Dynamics (MD) simulations suggest all of these compounds can change the C-alpha backbone, residue mobility, compactness, and solvent accessible surface area of L2R and I4L. Our results strongly suggest that these drug repurposing small molecules are worth exploring in vivo and in vitro for clinical applications.

11.
Virus Res ; 319: 198859, 2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-35809696

RESUMO

Hepatitis B virus (HBV) is a major public health concern worldwide. Co-infection of hepatitis B patients with other pathogens intensifies the severity of the disease. We report a novel variant of hepatitis B virus (HBV) in Bangladesh isolated from a patient co-infected with hepatitis C virus (HCV) who exhibited liver cirrhosis. From 150 collected plasma samples, we sequenced HBV complete genome from one HBV-HCV co-infected patient. The complete genome was analysed using bioinformatics tools, NCBI BLAST, Geno2Pheno, and SnapGene software. The strain belongs to genotype A and subgenotype A1. Upon analysing the complete genome of this strain, we found a frameshift deletion of 54 nucleotides at the pre-S2 region, a functional regulator of HBV surface protein. Furthermore, we observed a Y126H mutation in the polymerase protein of this strain. This is the first report with such an unusual pre-S deletion event of the HBV genome in an HCV-co-infected patient associated with liver cirrhosis. These findings may inform scientists about genomic modifications in the HBV genome associated with HCV co-infection.


Assuntos
Coinfecção , Hepatite B Crônica , Hepatite B , Hepatite C , DNA Viral/genética , Genótipo , Hepacivirus/genética , Hepatite B/complicações , Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B/genética , Hepatite C/complicações , Humanos , Cirrose Hepática/complicações
12.
Biomed Res Int ; 2022: 4558867, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35707384

RESUMO

HMG-CoA reductase or HMGCR (3-hydroxy-3-methylglutaryl-CoA reductase) is a rate-limiting enzyme involved in cholesterol biosynthesis. HMGCR plays an important role in the possible occurrence of hypercholesterolemia leading to atherosclerosis and coronary heart disease. This enzyme is a major target for cholesterol-lowering drugs such as "statin" which blocks the synthesis of mevalonate, a precursor for cholesterol biosynthesis. This study is aimed at characterizing deleterious mutations and classifying functional single nucleotide polymorphisms (SNPs) of the HMGCR gene through analysis of functional and structural evaluation, domain association, solvent accessibility, and energy minimization studies. The functional and characterization tools such as SIFT, PolyPhen, SNPs and GO, Panther, I-Mutant, and Pfam along with programming were employed to explore all the available SNPs in the HMGCR gene in the database. Among 6815 SNP entries from different databases, approximately 388 SNPs were found to be missense. Analysis showed that seven missense SNPs are more likely to have deleterious effects. A tertiary model of the mutant protein was constructed to determine the functional and structural effects of the HMGCR mutation. In addition, the location of the mutations suggests that they may have deleterious effects because most of the mutations are residing in the functional domain of the protein. The findings from the analysis predicted that rs147043821 and rs193026499 missense SNPs could cause significant structural and functional instability in the mutated proteins of the HMGCR gene. The findings of the current study will likely be useful in future efforts to uncover the mechanism and cause of hypercholesterolemia. In addition, the identified SNPs of HMGCR gene could set up a strong foundation for further therapeutic discovery.


Assuntos
Hidroximetilglutaril-CoA Redutases , Inibidores de Hidroximetilglutaril-CoA Redutases , Hipercolesterolemia , Colesterol/metabolismo , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/genética , Ácido Mevalônico/metabolismo , Polimorfismo de Nucleotídeo Único/genética
13.
Diabetol Metab Syndr ; 14(1): 18, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35090536

RESUMO

BACKGROUND: Association of single nucleotide polymorphisms (SNP) rs7756992 A/G and rs7754840 G/C of cyclin-dependent kinase 5 regulatory subunit-associated protein 1-like 1 (CDKAL1) gene with the susceptibility of gestational diabetes mellitus (GDM) has been studied in a group of Bangladeshi women. METHODS: In this case-control study, 212 GDM patients and 256 control subjects were genotyped for rs7756992 and rs7754840 by PCR-RFLP and TaqMan™ allelic discrimination assay method respectively. Genotyping results were confirmed by DNA sequencing and replicated TaqMan™ assay. The odds ratios and their 95% confidence interval were calculated by logistic regression to determine the associations between genotypes and GDM. RESULTS: The genotype frequencies of rs7756992-AA/AG/GG in the GDM group and the control group were 37%/48%, 53%/45%, 10%/7% and those of rs7754840-CC/CG/GG were 51%/55%, 40.1%/39.8%, 9%/5% respectively. Under dominant and log additive models rs7756992 was revealed significantly associated with GDM after being adjusted for family history of diabetes (FHD) and gravidity. Conversely, rs7754840 was significantly associated (P = 0.047) with GDM only under the recessive model after the same adjustment. The risk allele frequency of both SNPs was higher in the GDM group but significantly (P = 0.029) increased prevalence was observed in the rs7756992 G allele. When positive FHD and risk alleles of these SNPs were synergistically present in any pregnant woman, the chance of developing GDM was augmented by many folds. The codominant model revealed 2.5 and 2.1 folds increase in odds by AG (rs7756992) and GC (rs7754840) genotypes and 3.7 and 4.5 folds by GG (rs7756992) and CC (rs7754840) genotypes respectively. A significant 2.7 folds (P = 0.038) increase in odds of GDM resulted from the interaction of rs7756992 and family history of diabetes under the dominant model. The cumulative effect of multigravidity and risk alleles of these SNPs increased the odds of GDM more than 1.5 folds in different genotypes. CONCLUSION: This study not only revealed a significant association between rs7756992 and rs7754840 with GDM but also provided the possibility as potential markers for foretelling about GDM and type 2 diabetes mellitus in Bangladeshi women.

14.
PLoS One ; 16(9): e0258019, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34587212

RESUMO

As the COVID-19 pandemic continues to ravage across the globe and take millions of lives and like many parts of the world, the second wave of the pandemic hit Bangladesh, this study aimed at understanding its causative agent, SARS-CoV-2 at the genomic and proteomic level and provide precious insights about the pathogenesis, evolution, strengths and weaknesses of the virus. As of Mid-June 2021, over 1500 SARS-CoV-2 genomesequences have been deposited in the GISAID database from Bangladesh which were extracted and categorized into two waves. By analyzing these genome sequences, it was discovered that the wave-2 samples had a significantly greater average rate of mutation/sample (30.79%) than the wave-1 samples (12.32%). Wave-2 samples also had a higher frequency of deletion, and transversion events. During the first wave, the GR clade was the most predominant but it was replaced by the GH clade in the latter wave. The B.1.1.25 variant showed the highest frequency in wave-1 while in case of wave-2, the B.1.351.3 variant, was the most common one. A notable presence of the delta variant, which is currently at the center of concern, was also observed. Comparison of the Spike protein found in the reference and the 3 most common lineages found in Bangladesh namely, B.1.1.7, B.1.351, B.1.617 in terms of their ability to form stable complexes with ACE2 receptor revealed that B.1.617 had the potential to be more transmissible than others. Importantly, no indigenous variants have been detected so far which implies that the successful prevention of import of foreign variants can diminish the outbreak in the country.


Assuntos
COVID-19/epidemiologia , Genômica/métodos , SARS-CoV-2/genética , Bangladesh/epidemiologia , Surtos de Doenças/prevenção & controle , Variação Genética/genética , Genoma Viral/genética , Humanos , Mutação/genética , Pandemias , Filogenia , Proteômica , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética
15.
J Genet Eng Biotechnol ; 19(1): 52, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33797663

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the etiologic agent of coronavirus disease 2019 (COVID-19), is rapidly acquiring new mutations. Analysis of these mutations is necessary for gaining knowledge regarding different aspects of therapeutic development. Previously, we have reported a Sanger method-based genome sequence of a viral isolate named SARS-CoV-2 NIB-1, circulating in Bangladesh. The genome has four novel non-synonymous mutations in V121D, V843F, A889V, and G1691C positions. RESULTS: Using different computational tools, we have found V121D substitution has the potential to destabilize the non-structural protein-1 (NSP-1). NSP-1 inactivates the type-1 interferon-induced antiviral system. Hence, this mutant could be a basis of attenuated vaccines against SARS-CoV-2. V843F, A889V, and G1691C are all located in nonstructural protein-3 (NSP-3). G1691C can decrease the flexibility of the protein. V843F and A889V might change the binding pattern and efficacy of SARS-CoV-2 papain-like protease (PLPro) inhibitor GRL0617. V843F substitution in PLPro was the most prevalent mutation in the clinical samples. This mutation showed a reduced affinity for interferon-stimulated gene-15 protein (ISG-15) and might have an impact on innate immunity and viral spread. However, V843F+A889V double mutant exhibited the same binding affinity as wild type PLPro. A possible reason behind this phenomenon can be that V843F is a conserved residue of PLPro which damaged the protease structure, but A889V, a less conserved residue, presumably neutralized that damage. CONCLUSIONS: Mutants of NSP-1 could provide attenuated vaccines against coronavirus. Also, these mutations of PLPro might be targeted to develop better anti-SARS therapeutics. We hope our study will help to get better insides during the development of attenuated vaccine and PLPro inhibitors.

16.
Gene ; 771: 145368, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33346100

RESUMO

Coronavirus disease-2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), has become an immense threat to global public health. In this study, we performed complete genome sequencing of a SARS-CoV-2 isolate. More than 67,000 genome sequences were further inspected from Global Initiative on Sharing All Influenza Data (GISAID). Using several in silico techniques, we proposed prospective therapeutics against this virus. Through meticulous analysis, several conserved and therapeutically suitable regions of SARS-CoV-2 such as RNA-dependent RNA polymerase (RdRp), Spike (S) and Membrane glycoprotein (M) coding genes were selected. Both S and M were chosen for the development of a chimeric vaccine that can generate memory B and T cells. siRNAs were also designed for S and M gene silencing. Moreover, six new drug candidates were suggested that might inhibit the activity of RdRp. Since SARS-CoV-2 and SARS-CoV-1 have 82.30% sequence identity, a Gene Expression Omnibus (GEO) dataset of Severe Acute Respiratory Syndrome (SARS) patients were analyzed. In this analysis, 13 immunoregulatory genes were found that can be used to develop type 1 interferon (IFN) based therapy. The proposed vaccine, siRNAs, drugs and IFN based analysis of this study will accelerate the development of new treatments.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , SARS-CoV-2/genética , Sequenciamento Completo do Genoma/métodos , Antivirais/uso terapêutico , COVID-19/virologia , Simulação por Computador , Sequência Conservada , Proteínas M de Coronavírus/genética , Desenho de Fármacos , Feminino , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Humanos , Interferons/farmacologia , Pessoa de Meia-Idade , Estudos Prospectivos , RNA Polimerase Dependente de RNA/genética , SARS-CoV-2/classificação , Análise de Sequência de RNA , Glicoproteína da Espícula de Coronavírus/genética
17.
Microbiol Resour Announc ; 9(28)2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32646908

RESUMO

A coding-complete genome sequence of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) isolate was revealed. The sample for the virus was isolated from a female patient from Dhaka, Bangladesh, suffering from coronavirus disease-2019 (COVID-19).

18.
Mol Genet Genomic Med ; 8(2): e1073, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31816668

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a chronic disorder of which stress is a major contributor. Under stressful condition, body synthesizes a family of molecular chaperone called Heat-shock proteins (HSPs). Current study assessed the frequency and association of HSP70-hom + 2,437 T/C polymorphism with T2DM risk among Bangladeshis. METHODS: This polymorphism was selected through bioinformatics analyses and identified by PCR-RFLP method. RESULTS: Bioinformatics analysis identified this SNP as missense mutation which could destabilize the final HSP product. Heterozygous mutant (CT) genotype was significantly associated with T2DM incidence among the studied populations (p = .015). Further analysis revealed a strong association with female patients (p = .002), while the male group showed no association (p = .958). Moreover, the C allele was significantly associated among all diabetic patients (p = .016) and particularly in the female patient group (p = .001). However, under stressful condition, males with CT genotype were at high risk for T2DM incidence whereas, females with CT genotype showed no significant association. CONCLUSIONS: HSP70-hom + 2,437 T/C polymorphism was found to be significantly associated with T2DM incidence in the Bangladeshi population in both stress-dependent and independent manners.


Assuntos
Diabetes Mellitus Tipo 2/genética , Proteínas de Choque Térmico HSP70/genética , Polimorfismo de Nucleotídeo Único , Adulto , Bangladesh , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/psicologia , Heterozigoto , Humanos , Pessoa de Meia-Idade , Fatores Sexuais , Estresse Psicológico/epidemiologia
19.
F1000Res ; 7: 1023, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30228877

RESUMO

The burden of chronic hepatitis B virus (HBV) infections is increasingly detected nowadays. Herein, we report a complete genome of HBV subgenotype C2 (HBV/C2) from a HBV infected patient. Complete genome analysis revealed that the isolated strain was a non-recombinant wild type and had several regular substitutions in the reverse transcriptase domain and small surface proteins of HBV. This study may help clinicians and scientists gain in-depth knowledge on the current substitutions of HBV/C2 genome and to identify potential therapies against HBV infections.


Assuntos
DNA Viral , Genoma Viral , Vírus da Hepatite B/genética , Hepatite B Crônica/genética , Humanos , Masculino , Pessoa de Meia-Idade
20.
Virus Res ; 255: 154-156, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30040979

RESUMO

We report a novel tri-genotypic recombinant Hepatitis B virus (HBV) strain circulating in Bangladesh. The strain is recombinant with the genotypes D, C and E, of which, genotype E was not reported before in Bangladesh. Additionally, the complete genome has a frameshift deletion of nine nucleotides from overlapping Surface and Polymerase genes, and a vaccine escape mutation, A128 V, in the surface protein. This is the first report with such unusual recombination event responsible for rapid liver cirrhosis in a 13 year old patient in Bangladesh. This report may alert the clinicians to take the measure to prevent an upcoming outbreak of recombinant HBV.


Assuntos
Vírus da Hepatite B/classificação , Vírus da Hepatite B/genética , Hepatite B/virologia , Cirrose Hepática/virologia , Filogenia , Recombinação Genética/genética , Adolescente , Bangladesh , Composição de Bases , DNA Viral , Tamanho do Genoma , Genoma Viral/genética , Genótipo , Humanos , Polimorfismo Genético , Análise de Sequência de DNA , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...