Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(19): 7220-7234, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37130352

RESUMO

Zn(II) (complex 1), Cd(II) (complex 2), and Hg(II) (complex 3) complexes have been synthesized using a triply protonated tptz (H3tptz3+) ligand and characterized mainly by single-crystal X-ray analysis. The general formula of all of the complexes is (H3tptz)3+·Cl-·[MCl4]2-·nH2O (where n = 1, 1.5, and 1.5 for complexes 1, 2, and 3, respectively). The crystallographic analysis reveals that the anion···π, anion···π+, and several hydrogen bonding interactions play a fundamental role in the stabilization of the self-assembled architectures that in turn help to enhance the dimensionality of all of the complexes. In addition, Hirshfeld surfaces and fingerprint plots have been deployed here to visualize the similarities and differences in hydrogen bonding interactions in 1-3, which are very important in forming supramolecular architectures. A density functional theory (DFT) study has been used to analyze and rationalize the supramolecular interactions by using molecular electrostatic potential (MEP) surfaces and combined QTAIM/NCI plots. Then, the device parameters for the complexes (1-3) have been thoroughly investigated by fabricating a Schottky barrier diode (SBD) on an indium tin oxide (ITO) substrate. It has been observed that the device made from complex 2 is superior to those from complexes 1 and 3, which has been explained in terms of band gaps, differences in the electronegativities of the central metal atoms, and the better supramolecular interactions involved. Finally, theoretical calculations have also been performed to analyze the experimental differences in band gaps as well as electrical conductivities observed for all of the complexes. Henceforth, the present work combined supramolecular, photophysical, and theoretical studies regarding group 12 metals in a single frame.

2.
Vet Res Commun ; 47(4): 2229-2233, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37059874

RESUMO

Antimicrobial peptides (AMPs) are naturally produced by all living organisms at a constitutive rate. They represent the first line of active defence systems against invading microorganisms, helping in innate immunity. Besides their therapeutic applications, great attention has also been given to the mesenchymal stem cells (MSCs) due to their antimicrobial activities. The study aimed to observe the mRNA expression profile of few antimicrobial peptides (AMPs) in canine MSCs during standard in vitro culture. MSCs were isolated from canine umbilical cord tissue, propagated and characterized by morphology, surface markers and tri-lineage differentiation capability. The mRNA expression of eleven commonly known antimicrobial peptides was checked by Reverse Transcriptase PCR. It has been found for the first time that canine MSCs naturally express the mRNAs of AMPs like C-X-C motif chemokine ligand 8 (CXCL8), Elafin (PI3), Hepcidin (HAMP), Lipocalin 2 (LCN2) and Secretory leukocyte protease inhibitor (SLPI). However, their expressions at protein level and, relation with antimicrobial effect of canine MSCs need to be explored.


Assuntos
Anti-Infecciosos , Células-Tronco Mesenquimais , Animais , Cães , Peptídeos Antimicrobianos , RNA Mensageiro/genética , Diferenciação Celular , Anti-Infecciosos/farmacologia , Cordão Umbilical/metabolismo , Células Cultivadas
3.
Vet Res Commun ; 47(2): 599-614, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36229724

RESUMO

Garole sheep exhibits within-breed difference in resistance to natural gastrointestinal nematode infection predominated by Haemonchus contortus. In the present study, interferon gamma gene (IFN-γ) was characterized in relation to parasitological, haematological, and immune response against H. contortus in resistant and susceptible Garole sheep. Resistant and susceptible Garole sheep were selected from the field based on consistent low faecal egg counts (FEC) for one year and single nucleotide polymorphisms (SNPs) in the IFN-γ gene. The partial amplification of IFN-γ gene (1282 bp) revealed 4 SNPs exclusively in resistant sheep and 3 SNPs were shared between resistant and susceptible Garole sheep. The selected resistant and susceptible Garole sheep were challenged with H. contortus infection. The parasitological, haematological, immunological responses, and expression of IFN-γ gene were compared between the resistant and susceptible Garole sheep. The FEC of resistant sheep was significantly (P < 0.05) lower than the susceptible sheep infected with H. contortus. There was spontaneous elimination of H. contortus from 28 to 33 days post infection (DPI) in resistant sheep. Haemoglobin and packed cell volume were significantly (P < 0.05) higher in resistant sheep than the susceptible sheep. The serum concentration of immunoglobulin (Ig)G1 and IgA and cytokine IFN-γ activity and also the expression of IFN-γ gene were significantly (P < 0.05) higher in the infected resistant sheep from 14 to 28 DPI compared to the susceptible sheep. In resistant sheep, IgA and IgG1 and cytokine IFN-γ positively correlated with expression of IFN-γ gene, and the SNPs recorded in the resistant sheep only might play an important role in conferring resistance against H. contortus. Further studies are required to elucidate the role of IFN-γ gene in H. contortus resistance in Garole sheep.


Assuntos
Hemoncose , Haemonchus , Doenças dos Ovinos , Ovinos , Animais , Haemonchus/genética , Interferon gama/genética , Fezes , Polimorfismo de Nucleotídeo Único , Imunoglobulina A/genética , Doenças dos Ovinos/genética , Hemoncose/genética , Hemoncose/veterinária , Contagem de Ovos de Parasitas/veterinária
4.
Nanomedicine ; 40: 102487, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34740869

RESUMO

Induced pluripotent stem cells (iPSCs) are a promising cell source for regenerative medicine. However, their feeder-free maintenance in undifferentiated states remains challenging. In recent past extensive studies have been directed using pristine or functionalized carbon nanotube in tissue engineering. Here we proposed thin films of functionalized carbon nanotubes (OH-single-walled CNTs [SWCNTs] and OH-multiwalled CNTs [MWCNTs]), as alternatives for the feeder-free in vitro culture of canine iPSCs (ciPSCs), considered as the cellular model. The ciPSC colonies could maintain their dome-shaped compactness and other characteristics when propagated on CNT films. Concomitantly, high cell viability and upregulation of pluripotency-associated genes and cell adhesion molecules were observed, further supported by molecular docking. Moreover, CNTs did not have profound toxic effects compared to feeder cultures as evident by cytocompatibility studies. Further, cardiac and neuronal differentiation of ciPSCs was induced on these films to determine their influence on the differentiation process. The cells retained differentiation potential and the nanotopographical features of the substrates provided positive cues to enhance differentiation to both lineages as evident by immunocytochemical staining and marker gene expression. Overall, OH-SWCNT provided better cues, maintained pluripotency, and induced the differentiation of ciPSCs. These results indicate that OH-functionalized CNT films could be used as alternatives for the feeder-free maintenance of ciPSCs towards prospective utilization in regenerative medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas , Nanotubos de Carbono , Animais , Diferenciação Celular/fisiologia , Cães , Simulação de Acoplamento Molecular , Nanotubos de Carbono/química , Estudos Prospectivos
5.
Vet World ; 14(7): 1867-1873, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34475710

RESUMO

The RFamide-related peptides (RFRPs) are the group of neuropeptides synthesized predominantly from the hypothalamus that negatively affects the hypothalamo-hypophyseal-gonadal (hypothalamic-pituitary-gonadal [HPG]) axis. These peptides are first identified in quail brains and emerged as the mammalian orthologs of avian gonadotropin inhibitory hormones. The RFRP-3 neurons in the hypothalamus are present in several mammalian species. The action of RFRP-3 is mediated through a G-protein-coupled receptor called OT7T022. The predominant role of RFRP-3 is the inhibition of HPG axis with several other effects such as the regulation of metabolic activity, stress regulation, controlling of non-sexual motivated behavior, and sexual photoperiodicity in concert with other neuropeptides such as kisspeptin, neuropeptide-Y (NPY), pro-opiomelanocortin, orexin, and melanin. RFamide peptides synthesized in the granulosa cells, interstitial cells, and seminiferous tubule regulate steroidogenesis and gametogenesis in the gonads. The present review is intended to provide the recent findings that explore the role of RFRP-3 in regulating HPG axis and its potential applications in the synchronization of reproduction and its therapeutic interventions to prevent stress-induced amenorrhea.

6.
Tissue Cell ; 71: 101571, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34139604

RESUMO

Induced pluripotent stem cells (iPSCs) have attracted an interest for personalized cell based therapy along with various other applications. There have been few studies that effective nanomaterial based scaffolds act as alternative to the commonly used feeder dependent in vitro maintenance of iPSCs. The present study provides the fundamental information on ex vivo behavior of canine iPSC (ciPSCs) maintained on carboxylic acid (COOH) functionalized single-walled carbon nanotubes (COOH-SWCNTs) and multi-walled carbon nanotubes (COOH-MWCNTs) substrates. Here in we evaluated the comparative colony morphology, propagation, characterization, cytocompatibility and differentiation capability of ciPSC cultured on MEF feeder taken as control, and COOH-SWCNTs and COOH-MWCNTs substrates. We observed a healthy growth of ciPSCs on both the types of carbon nanotubes (CNTs) similar to feeder. The ciPSC colonies grown on both CNTs were positive for alkaline phosphatase staining and expressed pluripotent markers with notable significance. Further, the ciPSC colonies grew on these CNTs retained the in vitro differentiation ability into three germ layers as well as cardiac cell. Cytotoxicity analysis revealed that (COOH) functionalized CNTs provided a culture condition of low cytotoxicity. The results of the present study indicated that (COOH) functionalized CNTs could be used as xeno-free substrate to support the maintenance of iPSCs.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Teste de Materiais , Miócitos Cardíacos/metabolismo , Nanotubos de Carbono/química , Animais , Cães , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia
7.
Vet World ; 13(12): 2772-2779, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33487997

RESUMO

BACKGROUND AND AIM: Veterinary health care is an emergent area in animal sciences and innovative therapeutic approaches happen to be imperative in the present days. In view of the importance of cattle health and production, it is necessary to take up contemporary approach of stem cell therapy in this sector also. This study aimed to standardize an explant culture method of bovine umbilical tissue offcut to isolate mesenchymal stem cells (MSCs) because considerable efforts are required for ensuring easy accessibility and availability of MSCs in bulk quantity, as well as in establishing and characterizing the cell lines. MATERIALS AND METHODS: The umbilical cord (UC) tissue matrix offcut was collected after calving. A simplified in vitro cell isolation technique was followed to collect the emerged out cells from the explants of UC. Further, we expanded these isolated cells in vitro, observed its growth kinetics, and characterized to confirm as per the criterion of bovine MSCs. RESULTS: A considerable exponential growth rate of the UC-derived cells was noticed. In addition to their confirmation as MSCs, the cells also exhibited plastic adherent property and maintained the spindle-shaped morphology throughout the in vitro culture. The cultured cells were found positive MSC-specific surface markers CD105, CD90, and CD73 and were negative for hematopoietic cell marker CD45. Cytochemical studies revealed the ability of the cells to differentiate into osteogenic, chondrogenic, and adipogenic lineages. CONCLUSION: This simplified method of isolation and culture of bovine multipotent MSCs from the UC offcut collected after calving could be extrapolated for the greater availability of the cells for prospective therapeutic applications.

8.
Biotechnol Rep (Amst) ; 24: e00387, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31799142

RESUMO

Nanotopography of culture substrate acts as a positive cue in cell-biomaterial based tissue regeneration. Considering the potentiality of carbon nanotubes (CNTs) this study was designed to evaluate its two functionalized form by an in vitro culture condition using canine mesenchymal stem cells as cellular model. Cells were isolated and its behaviour, proliferation and differentiation processes were elucidated onto CNT substrates. Beside the variations in cellular behaviour it was remarkably noted that even though proliferation was reduced but osteogenic and chondrogenic differentiation was enhanced over multi-walled CNTs, whereas neuronal differentiation was better supported by single walled CNTs as evidenced by our cytochemical, immunocytochemical, gene expression and flow cytometry assays. The former one was noticed more cytocompatible by our different apoptosis studies. The outcome of these experiments collectively indicated that hydroxylated functionalized CNTs could be a potential scaffold constituent for future experimentations as well as for the application in regenerative medicine.

9.
J Mater Sci Mater Med ; 29(1): 4, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29204722

RESUMO

Sustained and controlled release of neurotrophic factors in target tissue through nanomaterial based delivery system could be a better strategy for nerve tissue regeneration. The present study aims to prepare the nerve growth factor (NGF) encapsulated chitosan nanoparticles (NGF-CNPs) and its evaluation on neuronal differentiation potentiality of canine bone marrow derived mesenchymal stem cells (cBM-MSCs). The NGF-CNPs were prepared by ionotropic gelation method with tripolyphosphate (TPP) as an ionic cross-linking agent. Observations on physiochemical properties displayed the size of nanoparticles as 80-90 nm with positive zeta potential as well as an ionic interaction between NGF and nanoparticle. NGF loading efficiency was found to be 61% while its sustained release was observed by an in vitro release kinetics study. These nanoparticles were found to be cytocompatible to cBM-MSCs when supplemented at a concentration upto 4 mg/ml in culture media. The NGF-CNP supplemented culture media was able to transdifferentiate the preinduced cBM-MSCs into neurons in a better way than unbound NGF supplementation. Further, it was also noticed that NGF-CNPs were able to transdifferentiate cBM-MSCs without any chemical based preinduction. In conclusion, our findings propose that NGF-CNPs are capable of releasing bioactive NGF with the ability to transdifferentiate mesenchymal stem cells into neurons, suggesting its potential future application in nerve tissue regeneration.


Assuntos
Quitosana/química , Células-Tronco Mesenquimais/citologia , Nanopartículas Metálicas/química , Fator de Crescimento Neural/química , Neurônios/citologia , Animais , Apoptose , Bioensaio , Diferenciação Celular , Proliferação de Células , Reagentes de Ligações Cruzadas/química , Meios de Cultura , Cães , Sistemas de Liberação de Medicamentos , Desenho de Equipamento , Citometria de Fluxo , Íons , Nanopartículas/química , Regeneração Nervosa , Neurônios/efeitos dos fármacos , Polifosfatos/química
10.
Int J Nanomedicine ; 12: 3235-3252, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28458543

RESUMO

In the field of regenerative medicine, numerous potential applications of mesenchymal stem cells (MSCs) can be envisaged, due to their ability to differentiate into a range of tissues on the basis of the substrate on which they grow. With the advances in nanotechnology, carbon nanotubes (CNTs) have been widely explored for use as cell culture substrate in tissue engineering applications. In this study, canine bone marrow-derived MSCs were considered as the cellular model for an in vitro study to elucidate the collective cellular processes, using three different varieties of thin films of functionalized carbon nanotubes (COOH-single-walled CNTs [SWCNTs], COOH-multiwalled CNTs [MWCNTs] and polyethylene glycol [PEG]-SWCNTs), which were spray dried onto preheated cover slips. Cells spread out better on the CNT films, resulting in higher cell surface area and occurrence of filopodia, with parallel orientation of stress fiber bundles. Canine MSCs proliferated at a slower rate on all types of CNT substrates compared to the control, but no decline in cell number was noticed during the study period. Expression of apoptosis-associated genes decreased on the CNT substrates as time progressed. On flow cytometry after AnnexinV-fluorescein isothiocyanate/propidium iodide (PI) staining, total number of apoptotic and necrotic cells remained lower in COOH-functionalized films compared to PEG-functionalized ones. Collectively, these results indicate that COOH-MWCNT substrate provided an environment of low cytotoxicity. Canine MSCs were further induced to differentiate along osteogenic, chondrogenic, and neuronal lineages by culturing under specific differentiation conditions. The cytochemical and immunocytochemical staining results, as well as the expression of the bone marker genes, led us to hypothesize that the COOH-MWCNT substrate acted as a better cue, accelerating the osteogenic differentiation process. However, while chondrogenesis was promoted by COOH-SWCNT, neuronal differentiation was promoted by both COOH-SWNCT and COOH-MWCNT. Taken together, these findings suggest that COOH-functionalized CNTs represent a promising scaffold component for future utilization in the selective differentiation of canine MSCs in regenerative medicine.


Assuntos
Células-Tronco Mesenquimais/citologia , Nanotubos de Carbono/química , Alicerces Teciduais , Animais , Apoptose/genética , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Condrogênese/fisiologia , Cães , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/fisiologia , Osteogênese/fisiologia , Polietilenoglicóis/química , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos
11.
Tissue Cell ; 49(2 Pt B): 270-274, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28190551

RESUMO

Stem cell niche research uses nanotechnologies to mimic the extra-cellular microenvironment to promote proliferation and differentiation. The aim of designing different scaffolds is to simulate the best structural and environmental pattern for extracellular matrix. This experiment was designed to study the proliferative behaviour of canine bone marrow deriver mesenchymal stem cells (MSCs) on different nanomaterial based thin film scaffolds of carbon nanotubes (CNT), chitosan and poly ε-caprolactone. Similar number of cells was seeded on the scaffolds and standard cell culture flask, taken as control. Cells were maintained on DMEM media and relative number of metabolically active cells was determined by MTT assay up to day six of culture. Cells proliferated on control and all the scaffolds as the days progressed. Although proliferation rate was slow but no decline of cell number was noticed on the scaffolds during the study period. Initially, the cell proliferation was lower on CNT but as time progressed no significant difference was observed compared to control. The result indicated that nanomaterial based scaffolds reduce the proliferation rate of canine MSCs. However, canine MSCs adapted and proliferated better on CNT substrate in vitro and may be used as a scaffold component in canine tissue engineering in future.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Nanoestruturas/administração & dosagem , Nanotubos de Carbono/química , Engenharia Tecidual , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Caproatos/administração & dosagem , Caproatos/química , Diferenciação Celular/efeitos dos fármacos , Quitosana/administração & dosagem , Quitosana/química , Cães , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Lactonas/administração & dosagem , Lactonas/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanoestruturas/química , Osteogênese/efeitos dos fármacos , Alicerces Teciduais
12.
Int J Dev Biol ; 61(1-2): 81-88, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27528045

RESUMO

Generation of pluripotent stem cells by reprogramming somatic cells of quality animals has numerous potential applications in agricultural and biomedical sciences. Unfortunately, till now, reprogramming of buffalo fetal fibroblast cells (bFFs) has been very ineffient despite intensive efforts. Here, we attempted to enhance reprogramming efficiency by using the HDAC inhibitor valproic acid (VPA) in bFFs transfected with pLentG-KOSM pseudo virus carrying mouse specific pluripotent genes. FACS analysis revealed that VPA treatment significantly increased (p < 0.05) GFP+ cells in comparison to VPA untreated control. Further, among different concentrations, 1.5 mM VPA was found to be optimal, increasing about 5 fold GFP+ cells and 2.5-fold GFP+ colonies with significantly (P < 0.05) larger size as compared to control. These colonies were further propagated and characterised. The colonies displayed embryonic stem cell (ESC)-like morphology, normal karyotype, and were positive for alkaline phosphatase staining as well as immune-positive for the ESC specific markers Oct4, Nanog, SSEA1, TRA-1-60 and TRA-1-81. The primary colonies revealed significantly higher (P < 0.05) expression of pluripotent genes than control, which declined gradually on subsequent passages. The reprogrammed cells readily formed embryoid bodies in vitro and cells of all three germ layers. These results indicated that VPA treatment of viral transducted cells can improve the generation of induced pluripotent stem cells and help their long term maintenance in buffalo.


Assuntos
Reprogramação Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Ácido Valproico/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Búfalos , Fibroblastos/citologia , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo
13.
Tissue Cell ; 48(6): 653-658, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27423985

RESUMO

Cord tissue fills the umbilical cord around the blood vessels and contains types of stem cells (mesenchymal stem cells or MSCs) that are not generally found in cord blood. MSCs are the stem cells that give rise to many of the "support tissues" in the body, including bone, cartilage, fat and muscle. Umbilical Cord Tissue cells (UCTs) possessing the capacity to differentiate into various cell types such as osteoblasts, chondrocytes and adipocytes have been previously isolated from different species including human, canine, murine, avian species etc. The present study documents the existence of similar multipotential stem cells in caprine UCTs having similar growth and morphological characteristics. The cells were isolated from caprine umbilical cord and cultivated in DMEM (low glucose) supplemented with 15% FBS, L-glutamine and antibiotics. Primary culture achieved confluence in 5-7days having spindle shaped morphology. The cells were morphologically homogeneous, showed robust proliferation ability with a population doubled time of 92.07h as well as normal karyotype. In vitro self-renewal capacity was demonstrated by colony-forming unit assay (CFU). The cells expressed MSC specific markers and showed multi-differentiation capability into adipogenic and osteogeneic. The results indicated that caprine UCTs (cUCTs) were isolated and characterized from umbilical cord tissue which can be used for tissue regeneration.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular/genética , Células-Tronco Mesenquimais/citologia , Cordão Umbilical/citologia , Adipogenia/genética , Animais , Separação Celular , Cães , Cabras , Humanos , Osteogênese/genética
14.
J Phys Chem B ; 120(27): 6803-11, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27295490

RESUMO

A new cobalt(II) coordination polymer 2 with µ1,5 dicyanamide (dca) and a bidentate ligand 3,5-dimethyl-1-(2'-pyridyl)pyrazole (pypz) is prepared in a stepwise manner using the newly synthesized one-dimensional linear Co(II) coordination polymer 1 as a precursor. The structural and thermal characterizations elucidate that the more stable complex 2 shows a two-dimensional layer structural feature. Here, Co(II) atoms with µ1,5 dicyanamido bridges are linked by the ligand pypz forming a macrocyclic chain that runs along the crystallographic 'c' axis having 'sql' (Shubnikov notation) net topology with a 4-connected uninodal node having point symbol {4(4).6(2)}. The remarkable noncovalent carbon-bonding contacts detected in the X-ray structure of compound 1 are analyzed and characterized by density functional theory calculations and the analysis of electron charge density (atoms in molecules).

15.
Iran J Parasitol ; 11(4): 542-548, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28127366

RESUMO

BACKGROUND: Cross antigenicity is the major problem in developing a reliable tool for immunodiagnosis and immunoprophylaxis of parasitic diseases. Mixed infection due to different types of gastrointestinal parasites is more common than single species infection under field condition. METHODS: The present study was undertaken to detect antigenic cross-reactivity among Haemonchus contortus, Oesophagostomum columbianum and Trichuris ovis of goats by SDS-PAGE and western blot analysis using hyperimmune sera (HIS) rose in rabbit separately against the antigens of the three nematode species. RESULTS: Thirteen, 16 and 14 polypeptides in crude somatic antigen (CSAg) of H. contortus (CSAg-Hc), O. columbianum (CSAg-Oc) and T. ovis (CSAg-To), respectively, were resolved in SDS PAGE analyses. It was revealed that 54 kDa peptide was shared by H.contortus and O. columbianum, whereas 47 kDa peptide was shared by O. columbianum and T. ovis. Western blot analyses revealed that three immunogenic polypeptides (MW 54, 49 and 42 kDa) in CSAg-Hc, five in CSAg-Oc (54, 47, 44, 38 and 35.5 kDa) and CSAg-To and five polypeptides (90, 51, 47, 39.5 and 31 kDa) in CSAg-To cross-reacted with the heterologous HIS. Four species-specific immunoreactive polypeptides (92, 85, 65 and 39 kDa) of H. contortus and two (72 & 26 kDa) in O. columbianum were also identified in the study. CONCLUSION: The shared polypeptides and species-specific polypeptides might be evaluated as protective antigen and subsequently exploitation for developing immunodiagnostic and for immunoprophylactic tools of for these common nematode species.

16.
Analyst ; 139(2): 495-504, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24223423

RESUMO

A new chelating ligand [4-methyl-2,6-bis-(pyridin-2-yl-hydrazonomethyl)-phenol] (1) was prepared by the condensation of 2-hydrazinylpyridine with 2,6-diformyl-p-cresol. Compound 1 exhibits weak fluorescence due to intramolecular photoinduced electron transfer (PET). The sensor (1) demonstrates Zn(2+)-specific emission enhancement due to the "PET off" process through a 1:1 binding mode with the metal ion. The fluorescence quantum yield of chemosensor 1 is only 0.020, and it increases more than 14-fold (0.280) in the presence of one equivalent of the zinc ion. Interestingly, the introduction of other metal ions causes the fluorescence intensity to remain either unchanged or weakened except for Cd(2+). The new sensor showed 'naked-eye' detection of Zn(2+) ions: a color change of the solution from colorless to yellow. Ratiometric displacement of Cd(2+) ions from the complex by Zn(2+) ions supports the formation of a more stable sensor­Zn(2+) complex over the sensor­Cd(2+) complex. The experimental findings have been correlated with theoretical results using the B3LYP functional and 6-31G (d, p), LANL2DZ basis set for Cd(2+) (2) and Zn(2+) (3) complexes, respectively, by the Density Functional Theory (DFT) method. Moreover, the ability of probe 1 to sense Zn(2+) within human melanoma cancer cells has been explored, and the Zn(2+)-probing process in living cells was found to be reversible with zinc chelator solution of N,N,N,N-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) or EDTA.


Assuntos
Cádmio/química , Técnicas de Química Analítica/instrumentação , Cresóis/química , Melanoma/patologia , Imagem Molecular/métodos , Zinco/análise , Zinco/química , Absorção , Soluções Tampão , Linhagem Celular Tumoral , Humanos , Modelos Moleculares , Conformação Molecular , Teoria Quântica , Espectrometria de Fluorescência , Fatores de Tempo
17.
Dalton Trans ; 40(44): 11866-75, 2011 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-21971834

RESUMO

The ditopic ligand PyPzOAP (N-[(Z)-amino(pyridin-2-yl)methylidene]-5-methyl-1-(pyridin-2-yl)-1H-pyrazole-3-carbohydrazonic acid) and the polytopic ligand 2-PzCAP (N'(3),N'(5)-bis[(1E)-1-(pyridin-2-yl)ethylidene]-1H-pyrazole-3,5-dicarbohydrazide) were synthesized in situ by condensation of methyl imino picolinate with 5-methyl-1-(2-pyridyl) pyrazole-3-carbohydrazide and 2-acetyl pyridine with pyrazole-3,5-dicarbohydrazide respectively. The ligands PyPzOAP and PzOAP (reported earlier, Dalton Trans., 2007, 1229) self-assemble to form homoleptic [2 × 2] tetranuclear M(4) (M = Cu(II) and Ni(II)) square grids structures [Cu(4)(PyPzOAP)(4)](NO(3))(4) (1), [Cu(4)(PzOAP)(4)](ClO(4))(4) (2) and [Ni(4)(PyPzOAP)(4)](NO(3))(4)·8H(2)O·2CH(3)CN (3). While the ligand 2-PzCAP forms a dicopper(II) complex [Cu(2)(2-PzCAP)(OH)(NO(3))(H(2)O)](NO(3))·2H(2)O (4). The complex 1 is a perfect square grid (a = 4.201 Å), whereas, 2 and 3 are almost square grids. All these compounds have been characterized by X-ray structural analyses and variable temperature magnetic susceptibility measurements. EPR studies have also been carried out for complexes 1, 2 and 4. In the Cu(4) grid (1), all the Cu(II) centers are in a distorted octahedral environment with N(4)O(2) chromophore, while, in complex 2, all four Cu(II) centers have a square pyramidal environment with N(3)O(2) chromophore. In complex 3, all four Ni(II) centers have distorted octahedral geometry with N(4)O(2) chromophore. In compound 4, the Cu(II) centers are in square pyramidal environment with N(3)O(2) chromophore. The magnetic properties of compounds 1 and 2 show the presence of intramolecular ferromagnetic exchange interaction (J = 5.88 cm(-1) for 1 and 4.78 cm(-1) for 2). The complex 3 shows weak intramolecular antiferromagnetic interaction (J = -4.02 cm(-1)). While, complex 4, shows strong antiferromagnetic behavior (J = -443 cm(-1)).

18.
Vet Med Int ; 20102010 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-20886013

RESUMO

A study was conducted to establish the normal electrocardiogram in four different genetic strains of mithun (Bos frontalis). Electrocardiography, cardiac electrical axis, heart rate, rectal temperature and respiration rate were recorded in a total of 32 adult male mithun of four strains (n = 8 each). It was found that the respiration and heart rates were higher (P < .05) in Manipur than other three strains. Amplitude (P < .05) and duration of P wave and QRS complex differed (P < .01) among the strains. Mizoram strain had the highest amplitude and duration of P wave and QRS complex. On the other hand, higher (P < .05) amplitude and duration of T wave were recorded in Arunachalee and Mizoram strains. The mean electrical axis of QRS complex that were recorded for Arunachalee and Manipur strains were similar to that reported for other bovine species; whereas the electrical axis of QRS for Nagamese and Mizoram strains were more close to feline and caprine species, respectively. In conclusion, electrocardiogram of mithun revealed that the amplitude and duration of P wave, QRS complex and T wave were different among four different genetic strains of mithun and the electrical axis of QRS complex for Nagamese and Mizoram mithuns are dissimilar to bovine species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...