Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38768007

RESUMO

Electroencephalogram (EEG) is widely used in basic and clinical neuroscience to explore neural states in various populations, and classifying these EEG recordings is a fundamental challenge. While machine learning shows promising results in classifying long multivariate time series, optimal prediction models and feature extraction methods for EEG classification remain elusive. Our study addressed the problem of EEG classification under the framework of brain age prediction, applying a deep learning model on EEG time series. We hypothesized that decomposing EEG signals into oscillatory modes would yield more accurate age predictions than using raw or canonically frequency-filtered EEG. Specifically, we employed multivariate intrinsic mode functions (MIMFs), an empirical mode decomposition (EMD) variant based on multivariate iterative filtering (MIF), with a convolutional neural network (CNN) model. Testing a large dataset of routine clinical EEG scans (n = 6540) from patients aged 1 to 103 years, we found that an ad-hoc CNN model without fine-tuning could reasonably predict brain age from EEGs. Crucially, MIMF decomposition significantly improved performance compared to canonical brain rhythms (from delta to lower gamma oscillations). Our approach achieved a mean absolute error (MAE) of 13.76 ± 0.33 and a correlation coefficient of 0.64 ± 0.01 in brain age prediction over the entire lifespan. Our findings indicate that CNN models applied to EEGs, preserving their original temporal structure, remains a promising framework for EEG classification, wherein the adaptive signal decompositions such as the MIF can enhance CNN models' performance in this task.


Assuntos
Encéfalo , Eletroencefalografia , Redes Neurais de Computação , Humanos , Eletroencefalografia/métodos , Adulto Jovem , Adulto , Criança , Idoso , Adolescente , Lactente , Pré-Escolar , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Masculino , Feminino , Encéfalo/fisiologia , Algoritmos , Aprendizado Profundo , Análise Multivariada , Aprendizado de Máquina , Processamento de Sinais Assistido por Computador
2.
Entropy (Basel) ; 24(10)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37420342

RESUMO

Human dependence on computers is increasing day by day; thus, human interaction with computers must be more dynamic and contextual rather than static or generalized. The development of such devices requires knowledge of the emotional state of the user interacting with it; for this purpose, an emotion recognition system is required. Physiological signals, specifically, electrocardiogram (ECG) and electroencephalogram (EEG), were studied here for the purpose of emotion recognition. This paper proposes novel entropy-based features in the Fourier-Bessel domain instead of the Fourier domain, where frequency resolution is twice that of the latter. Further, to represent such non-stationary signals, the Fourier-Bessel series expansion (FBSE) is used, which has non-stationary basis functions, making it more suitable than the Fourier representation. EEG and ECG signals are decomposed into narrow-band modes using FBSE-based empirical wavelet transform (FBSE-EWT). The proposed entropies of each mode are computed to form the feature vector, which are further used to develop machine learning models. The proposed emotion detection algorithm is evaluated using publicly available DREAMER dataset. K-nearest neighbors (KNN) classifier provides accuracies of 97.84%, 97.91%, and 97.86% for arousal, valence, and dominance classes, respectively. Finally, this paper concludes that the obtained entropy features are suitable for emotion recognition from given physiological signals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...