Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 318: 120838, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36496069

RESUMO

The role of submarine groundwater discharge (SGD) in transporting terrestrial-sourced arsenic (As) to the global oceans is not well documented. In the present study, executed on a coast adjoining the extensive groundwater As-contaminated Ganges river delta, we hypothesize that As-enriched groundwater discharges to the adjoining Bay of Bengal (BoB) through SGD flow paths. We conducted high-resolution, field-based investigations and thermodynamic modeling to understand the SGD-sourced As discharge and geochemical cycling of As and other redox-sensitive solutes along the discharge path under varying redox conditions and water sediment interactions. The As distribution and other solutes were measured in a series of multi-depth observation wells and sediment cores, extending from the high tide line (HTL) to 100 m toward the sea, for pre- and post-monsoon seasons. Results reveal the presence of a plume carrying up to 30 µg/L dissolved load of As toward the sea. Arsenic is associated with a plume of Fe and exhibits similar shore-perpendicular variability. Arsenic distribution and transport is controlled by the Fe-Mn redox cycle and influenced by terrestrial groundwater discharge. Field-observations and geochemical modeling demonstrate that Fe-hydroxide precipitates in the subterranean estuary and acts as an interim sink for As , which is eventually mobilized on alteration of geochemical conditions with the season. Fluctuating plume size can be attributed to seasonal variation in fresh groundwater input to the site. Estimates indicate up to 55mg/m2/d As is released to BoB from the site. Based on physicochemical observations this study demonstrates the yet to be studied SGD derived As cycles and the role of SGD dynamics in controlling the fate of redox-sensitive contaminants and their discharge into global oceans.


Assuntos
Arsênio , Água Subterrânea , Arsênio/análise , Rios , Oceanos e Mares , Água , Monitoramento Ambiental/métodos , Água do Mar
2.
Sci Total Environ ; 798: 149198, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34333430

RESUMO

The global climate patterns like El Niño Southern Oscillation (ENSO) cycle and Indian Ocean Dipole (IOD) have impacts on surface water quality and groundwater recharge patterns. But the ENSO and IOD impacts on surface water-groundwater (SW-GW) interaction in terms of quality have not been studied. Therefore, the present study was conducted to delineate the impacts of ENSO and IOD on the SW-GW interaction process-induced groundwater quality of coastal aquifers of Sundarbans, by the application of isotopic signature, salinity content of groundwater and seawater in relation to rainfall variability. Study results revealed that the declining trend of rainfall potentially increases the seawater salinity. The rainfall pattern also positively correlates with the groundwater level (GWL) at a 5% level of significance observed from the wavelet analysis. The deficit in rainfall due to the El Niño is the possible reason for the declining GWL, which is giving rise to groundwater salinity. El Niño also affected the nearshore seawater salinity which was increased from 19 to 24 ppT. The study provides a surrogate understanding of the potential impact of El Niño in one of the most climatically vulnerable parts of the planet, while IOD impacts are not conclusive. In the scenario of depleted rainfall amount, groundwater abstraction practices need to be managed, otherwise, it could create a potential threat to the available drinking water resources in the present and future climate change scenarios.


Assuntos
Água Subterrânea , Rios , El Niño Oscilação Sul , Água do Mar , Água
3.
J Environ Manage ; 288: 112384, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33773213

RESUMO

Groundwater resources in South Asian cities are facing immense stress due to over-extraction leading to environmental, social and economic instabilities. The perennial mega rivers of Himalayas form the lifeline for South Asia, underpinning food and water security for a large population both directly and indirectly through exchange with groundwater systems. The present study delineates the spatio-temporal variation in patterns and processes of sub-hourly to annual-scale hydrological exchanges between the Ganges and its adjoining highly exploited aquifer in a urban-peri urban reach. Multivariate statistical analyses established river water-groundwater interaction in this region with ~40% loading of first principal component, i.e river water during monsoon on the shallow aquifer. The part of the aquifer detached from the main confined aquifer show an influence of precipitation (the second principal component) with loading of ~90%. Again the part of the aquifer suffering infiltration of local surface water bodies show effect of precipitation with a second principal loading of ~80%. Fourier transformation is used in the hydrograph to remove influence of heavy urbanization on the hydrographs. This study proves that the phenomenon of infiltrating river water during monsoon plays a primary role in controlling aquifer storage although contaminating the aquifer simultaneously. However, during pre and post-monsoon the flow path reversal helps in maintaining river baseflow. Cross-correlation between the river and piezometric series show increased delay of pressure head propagation of the infiltrating river waterfront, with increasing distance. These observations are also substantiated by stable isotope signatures. The present study provides an understanding of potential groundwater vulnerability resulting from waste water and irrigational contamination through river water intrusion which would eventually lead the government to implement proper water and environmental management policies towards availability of long-term sustainable water resources for the residents.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Ásia , Cidades , Monitoramento Ambiental , Rios , Estações do Ano , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...