Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(9): e2307110, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37857577

RESUMO

Noble metal-based catalyst, despite their exorbitant cost, are the only successful catalyst for bifunctional oxygen electrocatalysis owing to their capability to drive forward the reaction rate kinetically. Therefore, it is desirable to diminish the noble metal loading without any compromise in the catalyst performance. In this study, the aim to achieve two goals with one action via a single-step route to have ultra-low loading of Pd in the catalyst. The Pd is used as a catalyst for C─C bond formation followed by complexation reactions or vice versa, in conventional Suzuki-Miyaura cross-coupling (SMCC) reaction, which yields a Pd-based porous organic polymer. Interestingly, it is found that dispersed Pd nanocluster (PdNC ) is present together with Pd single atom doped into nanocarbon (Pd-NC) matrix in the catalyst (PdNC /Pd-NC800 ) that obtained after pyrolysis of the porous polymer. The catalyst exhibits remarkable bifunctional activity and durability towards oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Further, it is studied that the in situ attenuated total reflection infrared (ATR-IR) spectroscopy at different electrochemical potentials during ORR and OER to observe the reaction intermediates. The homemade zinc-air battery with the catalyst displayed great performance, establishing the significance of PdNC /Pd-NC800 as a bifunctional oxygen electrocatalyst.

2.
ACS Appl Mater Interfaces ; 15(41): 48326-48335, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37788172

RESUMO

A large number of scientific investigations are needed for developing a sustainable solid sorbent material for precombustion CO2 capture in the integrated gasification combined cycle (IGCC) that is accountable for the industrial coproduction of hydrogen and electricity. Keeping in mind the industrially relevant conditions (high pressure, high temperature, and humidity) as well as good CO2/H2 selectivity, we explored a series of sorbent materials. An all-rounder player in this game is the porous organic polymers (POPs) that are thermally and chemically stable, easily scalable, and precisely tunable. In the present investigation, we successfully synthesized two nitrogen-rich POPs by extended Schiff-base condensation reactions. Among these two porous polymers, TBAL-POP-2 exhibits high CO2 uptake capacity at 30 bar pressure (57.2, 18.7, and 15.9 mmol g-1 at 273, 298, and 313 K temperatures, respectively). CO2/H2 selectivities of TBAL-POP-1 and 2 at 25 °C are 434.35 and 477.93, respectively. On the other hand, at 313 K the CO2/H2 selectivities of TBAL-POP-1 and 2 are 296.92 and 421.58, respectively. Another important feature to win the race in the search of good sorbents is CO2 capture capacity at room temperature, which is very high for TBAL-POP-2 (15.61 mmol g-1 at 298 K for 30 to 1 bar pressure swing). High BET surface area and good mesopore volume along with a large nitrogen content in the framework make TBAL-POP-2 an excellent sorbent material for precombustion CO2 capture and H2 purification.

3.
Chem Sci ; 14(33): 8936-8945, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37621433

RESUMO

Ammonia is a crucial biochemical raw material for nitrogen containing fertilizers and a hydrogen energy carrier obtained from renewable energy sources. Electrocatalytic ammonia synthesis is a renewable and less-energy intensive way as compared to the conventional Haber-Bosch process. The electrochemical nitrogen reduction reaction (eNRR) is sluggish, primarily due to the deceleration by slow N2 diffusion, giving rise to competitive hydrogen evolution reaction (HER). Herein, we have engineered a catalyst to have hydrophobic and aerophilic nature via fluorinated copper phthalocyanine (F-CuPc) grafted with graphene to form a hybrid electrocatalyst, F-CuPc-G. The chemically functionalized fluorine moieties are present in the second coordination sphere, where it forms a three-phase interface. The hydrophobic layer of the catalyst fosters the diffusion of N2 molecules and the aerophilic characteristic helps N2 adsorption, which can effectively suppress the HER. The active metal center is present in the primary sphere available for the NRR with a viable amount of H+ to achieve a substantially high faradaic efficiency (FE) of 49.3% at -0.3 V vs. RHE. DFT calculations were performed to find out the rate determining step and to explore the full energy pathway. A DFT study indicates that the NRR process follows an alternating pathway, which was further supported by an in situ FTIR study by isolating the intermediates. This work provides insights into designing a catalyst with hydrophobic moieties in the second coordination sphere together with the aerophilic nature of the catalyst that helps to improve the overall FE of the NRR by eliminating the HER.

4.
Z Gesundh Wiss ; 31(2): 319-327, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-33432286

RESUMO

Purpose: The pandemic of coronavirus disease 2019 (COVID-19) has cost numerous lives and induced tremendous mental stress among people. The purpose of this research was to determine anxiety and depression levels, clinical features, and the connections between demographic variables and depression prevalence as well as anxiety prevalence among reported COVID-19 cases in Bangladesh. Methods: For the purpose of data collection, an online cross-sectional survey was carried out from May 26 to June 27, 2020, utilizing a Google adapted preformed questionnaire. The form was shared with a short overview and justification through Facebook, Twitter, Facebook messenger, Viber, and What's App. The Google form contains five parts: a brief introduction, an approval statement, demographics, clinical and radiological data, and mental health assessment by the Generalized Anxiety Disorder 7-item (GAD-7) scale and Patient Health Questionnaire (PHQ-9). Formal ethical clearance was taken from the Institute of Biological Science (IBSc), Bangladesh. Informed consent was ensured before participation. Results: One hundred and fifty-three (153) patients with COVID-19 who had an average age of 39.43 ± 17.59 years with male predominance (72%) were included. A total of 32.7% were doing health-care related jobs, and 17.7% lost their jobs due to COVID-19. Patients had a median income of 30,000 Bangladesh taka (BDT). Of all, 12.4% of the participants showed asymptomatic features, whereas 87.6% of patients were symptomatic and presented with fever (79%), cough (58.8%), myalgia (24.2%), breathlessness (23.5%), sore throat (21.6%), fatigue (19.6%), headache (13.7%), nausea and/or vomiting (11.8%), runny nose (9.8%), chest pain (9.2%), diarrhea (8.5%), stuffy nose (3.2%), ARDS (2.6%), oral ulcer (2.6%), and conjunctivitis (1.9%). Overall, the prevalence of anxiety and depression was 63.5% and 56.6%, respectively. Among the participants, 13.2% had only anxiety, 6.3% had only depression, and 50.3% had both. Conclusion: In most cases, middle age, male, and healthy workers were patients. Fever and cough were the standard presentations. Approximately two-thirds or 66.67% of patients had anxiety and depression, one or both.

5.
Molecules ; 27(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36364150

RESUMO

N-rich organic materials bearing polyphenolic moieties in their building networks and nanoscale porosities are very demanding in the context of designing efficient biomaterials or drug carriers for the cancer treatment. Here, we report the synthesis of a new triazine-based secondary-amine- and imine-linked polyphenolic porous organic polymer material TrzTFPPOP and explored its potential for in vitro anticancer activity on the human colorectal carcinoma (HCT 116) cell line. This functionalized (-OH, -NH-, -C=N-) organic material displayed an exceptionally high BET surface area of 2140 m2 g-1 along with hierarchical porosity (micropores and mesopores), and it induced apoptotic changes leading to high efficiency in colon cancer cell destruction via p53-regulated DNA damage pathway. The IC30, IC50, and IC70 values obtained from the MTT assay are 1.24, 3.25, and 5.25 µg/mL, respectively.


Assuntos
Neoplasias Colorretais , Polímeros , Humanos , Porosidade , Polímeros/farmacologia , Células HCT116 , Portadores de Fármacos , Neoplasias Colorretais/tratamento farmacológico
6.
Nanoscale Adv ; 4(10): 2313-2320, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-36133695

RESUMO

Cancer, one of the deadliest diseases for both sexes, has always demanded updated treatment strategies with time. Breast cancer is responsible for the highest mortality rate among females worldwide and requires treatment with advanced regimens due to the higher probability of breast cancer cells to develop drug cytotoxicity followed by resistance. Covalent organic framework (COF) materials with ordered nanoscale porosity can serve as drug delivery vehicles due to their biocompatible nature and large internal void spaces. In this research work, we have employed a novel biocompatible COF, TRIPTA, as a drug delivery carrier towards breast cancer cells. It served as a drug delivery vehicle for cisplatin in triple negative breast cancer (TNBC) cells. We have checked the potency of TRIPTA in combating the proliferation of metastatic TNBC cells. Our results revealed that cisplatin loaded over TRIPTA-COF exhibited a greater impact on the CD44+/CD24- cancer stem cell niche of breast cancer. Retarded migration of cancer cells has also been observed with the dual treatment of TRIPTA and cisplatin compared to that of cisplatin alone. Epithelial-mesenchymal transition (EMT) has also been minimized by the combinatorial treatment of cisplatin carried by the carrier material in comparison to cisplatin alone. The epithelial marker E-cadherin is significantly increased in cells treated with cisplatin together with the carrier COF, and the expression of mesenchymal markers such as N-cadherin is lower. The transcriptional factor Snail has been observed under the same treatment. The carrier material is also internalized by the cancer cells in a time-dependent manner, suggesting that the organic carrier can serve as a specific drug delivery vehicle. Our experimental results suggested that TRIPTA-COF can serve as a potent nanocarrier for cisplatin, showing higher detrimental effects on the proliferation and migration of TNBC cells by increasing the cytotoxicity of cisplatin.

7.
Chem Commun (Camb) ; 58(36): 5506-5509, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35419579

RESUMO

A new significant feature of a triazine-based covalent organic polymer electrocatalyst is demonstrated. The metal-free electrocatalyst has dual-active sites, which enable it to entangle oxygen via a push-pull interaction that plays a crucial role in promoting the oxygen reduction reaction.

9.
ChemSusChem ; 14(1): 408-416, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33052003

RESUMO

Photoelectrochemical water-splitting offers unique opportunity in the utilization of abundant solar light energy and water resources to produce hydrogen (renewable energy) and oxygen (clean environment) in the presence of a semiconductor photoanode. Zinc oxide (ZnO), a wide bandgap semiconductor is found to crystallize predominantly in the hexagonal wurtzite phase. Herein, we first report a new crystalline triclinic phase of ZnO by using N-rich antidiabetic drug metformin as a template via hydrothermal synthesis with self-assembled nanorod-like particle morphology. We have fabricated a heterojunction nanocomposite charge carrier photoanode by coupling this porous ZnO with a covalent organic framework, which displayed highly enhanced photocurrent density of 0.62 mA/cm2 at 0.2 V vs. RHE in photoelectrochemical water oxidation and excellent photon-to-current conversion efficiency at near-neutral pH vis-à-vis bulk ZnO. This enhancement of the photocurrent for the porous ZnO/COF nanocomposite material over the corresponding bulk ZnO could be attributed to the visible light energy absorption by COF and subsequent efficient charge-carrier mobility via porous ZnO surface.

10.
Front Chem ; 9: 803860, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004623

RESUMO

The development of an efficient, sustainable, and inexpensive metal-free catalyst for oxygen evolution reaction (OER) via photoelectrochemical water splitting is very demanding for energy conversion processes such as green fuel generators, fuel cells, and metal-air batteries. Herein, we have developed a metal-free pyrene-based nitrogen and sulfur containing conjugated microporous polymer having a high Brunauer-Emmett-Teller surface area (761 m2 g-1) and a low bandgap of 2.09 eV for oxygen evolution reaction (OER) in alkaline solution. The π-conjugated as-synthesized porous organic material (PBTDZ) has been characterized by Fourier transform infrared spectroscopy (FT-IR), solid-state 13C (cross-polarization magic angle spinning-nuclear magnetic resonance) CP-MAS NMR, N2 adsorption/desorption analysis, field-emission scanning electron microscope (FESEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) experiments. The material acts as an efficient catalyst for photoelectrochemical OER with a current density of 80 mA/cm2 at 0.8 V vs. Ag/AgCl and delivered 104 µmol of oxygen in a 2 h run. The presence of low bandgap energy, π-conjugated conducting polymeric skeleton bearing donor heteroatoms (N and S), and higher specific surface area associated with inherent microporosity are responsible for this admirable photoelectrocatalytic activity of PBTDZ catalyst.

11.
ACS Appl Mater Interfaces ; 11(1): 1520-1528, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30547587

RESUMO

Oxygen evolution reaction (OER) is energetically challenging from the platform of making many photovoltaic devices such as metal-air batteries and water splitting systems because of its poor kinetics even when precious metals are used. Herein, a Co(II)-porphyrin/pyrene-comprised conjugated microporous polymer Co-MPPy-1 has been developed which shows efficient OER in alkaline medium. The material was characterized by Fourier transform infrared, solid-state 13C cross-polarization magic angle spinning nuclear magnetic resonance, N2 volumetric adsorption/desorption analysis, scanning electron microscopy, ultra high resolution-transmission electron microscopy, X-ray photoelectron spectroscopy, and other physical studies. Co-MPPy-1 showed Brunauer-Emmett-Teller surface area of ∼501 m2 g-1. Co-MPPy-1 achieved a current density of 1 and 10 mA/cm-2 at 340 and 420 mV, respectively. The turnover frequency calculated for the OER is 0.43 s-1. The heterogeneity of this electrocatalyst was tested by chronoamperometric measurement and 1000 cycle recyclability test with retainment of the excellent electrochemical catalytic activity. This can be attributed to the presence of high density of Co(II) porphyrin unit and efficient charge transport in the π-conductive conjugated polymeric backbone.

12.
Chem Commun (Camb) ; 54(86): 12270, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30324943

RESUMO

Correction for 'A new triazine based π-conjugated mesoporous 2D covalent organic framework: its in vitro anticancer activities' by Sabuj Kanti Das et al., Chem. Commun., 2018, 54, 11475-11478.

14.
ACS Appl Mater Interfaces ; 10(28): 23813-23824, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29956910

RESUMO

Design and successful synthesis of phenolic-OH and amine-functionalized porous organic polymers as adsorbent for postcombustion CO2 uptake from flue gas mixtures along with high CO2/N2 selectivity is a very demanding research area in the context of developing a suitable adsorbent to mitigate greenhouse gases. Herein, we report three triazine-based porous organic polymers TrzPOP-1, -2, and -3 through the polycondensation of two triazine rings containing tetraamine and three dialdehydes. These porous organic polymers possess high Brunauer-Emmett-Teller (BET) surface areas of 995, 868, and 772 m2 g-1, respectively. Out of the three materials, TrzPOP-2 and TrzPOP-3 contain additional phenolic-OH groups along with triazine moiety and secondary amine linkages. At 273 K, TrzPOP-1, -2, and -3 displayed CO2 uptake capacities of 6.19, 7.51, and 8.54 mmol g-1, respectively, up to 1 bar pressure, which are considerably high among all porous polymers reported till date. Despite the lower BET surface area, TrzPOP-2 and TrzPOP-3 containing phenolic-OH groups showed higher CO2 uptakes. To understand the CO2 adsorption mechanism, we have further performed the quantum chemical studies to analyze noncovalent interactions between CO2 molecules and different polar functionalities present in these porous polymers. TrzPOP-1, -2, and -3 have the capability of selective CO2 uptake over that of N2 at 273 K with the selectivity of 61:1, 117:1, and 142:1 by using the initial slope comparing method, along with 108.4, 140.6, and 167.4 by using ideal adsorbed solution theory (IAST) method, respectively. On the other hand, at 298 K, the calculated CO2/N2 selectivities in the initial slope comparing method for TrzPOP-1, -2, and -3 are 27:1, 72:1, and 96:1, whereas those using IAST method are 42.1, 75.7, and 94.5, respectively. Cost effective and scalable synthesis of these porous polymeric materials reported herein for selective CO2 capture has a very promising future for environmental clean-up.

15.
Dalton Trans ; 46(40): 13783-13792, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-28959801

RESUMO

Metal organic frameworks (MOFs) bearing multicarboxylate linkers are in great demand for designing robust heterogeneous catalysts. A new microporous Ce(iii)-based metal organic framework (Ce2NDC3) has been synthesized under solvothermal conditions, which showed strong paramagnetism and a CO2 uptake capacity of 1.64 mmol g-1 (7.23 weight%) at 273 K. The Ce2NDC3 showed high catalytic activity in CO2 fixation for the synthesis of cyclic carbonates with a maximum yield of 92% at ambient temperature and pressure. This rare earth metal-based MOF has been well characterized by single crystal X-ray diffraction, PXRD, N2 adsorption/desorption, UHR-TEM, FESEM, FTIR, 13C MAS NMR and TGA. Here, we have carried out magnetic analysis, which revealed that the Ce(iii) in this MOF exhibited 2F5/2 magnetism in the ground state. The Ce2NDC3 catalyst showed high recycling efficiency in CO2 fixation reactions, together with retention of the MOF structure after several rounds of reuse. Presumably, the presence of acidic Ce(iii) metal ions and microporosity in the coordinated polymer network is responsible for the high catalytic activity.

16.
ACS Appl Mater Interfaces ; 9(28): 23843-23851, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28650614

RESUMO

A [2 + 2] Schiff base type condensation between 5,10,15,20-tetrakis(4-aminophenyl)porphyrin (TAP) and 1,3,6,8-tetrakis (4-formylphenyl) pyrene (TFFPy) under solvothermal condition yields a crystalline, quasi-two-dimensional covalent organic framework (SB-PORPy-COF). The porphyrin and pyrene units are alternatively occupied in the vertex of 3D triclinic crystal having permanent microporosity with moderately high surface area (∼869 m2 g-1) and promising chemical stability. The AA stacking of the monolayers give a pyrene bridged conducting channel. SB-PORPy-COF has been exploited for metal free hydrogen production to understand the electrochemical behavior using the imine based docking site in acidic media. SB-PORPy-COF has shown the onset potential of 50 mV and the Tafel slope of 116 mV dec-1. We expect that the addendum of the imine based COF would not only enrich the structural variety but also help to understand the electrochemical behavior of these class of materials.

17.
ChemSusChem ; 10(5): 921-929, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28058807

RESUMO

The new covalent organic framework material TDFP-1 was prepared through a solvothermal Schiff base condensation reaction of the monomers 1,3,5-tris-(4-aminophenyl)triazine and 2,6-diformyl-4-methylphenol. Owing to its high specific surface area of 651 m2 g-1 , extended π conjugation, and inherent microporosity, TDFP-1 exhibited an excellent energy-storage capacity with a maximum specific capacitance of 354 F g-1 at a scan rate of 2 mV s-1 and good cyclic stability with 95 % retention of its initial specific capacitance after 1000 cycles at 10 A g-1 . The π-conjugated polymeric framework as well as ionic conductivity owing to the possibility of ion conduction inside the micropores of approximately 1.5 nm make polymeric TDFP-1 a favorable candidate as a supercapacitor electrode material. The electrochemical properties of this electrode material were measured through cyclic voltammetry, galvanic charge-discharge, and electrochemical impedance spectroscopy, and the results indicate its potential for application in energy-storage devices.


Assuntos
Capacitância Elétrica , Triazinas/química , Cresóis/química , Eletroquímica , Modelos Moleculares , Conformação Molecular , Bases de Schiff/química , Solventes/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...