Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(49): 20439-20449, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38001041

RESUMO

High-valent metal-fluoride complexes are currently being explored for concerted proton-electron transfer (CPET) reactions, the driving force being the high bond dissociation energy of H-F (BDEH-F = 135 kcal/mol) that is formed after the reaction. Ni(III)-fluoride-based complexes on the pyridine dicarboxamide pincer ligand framework have been utilized for CPET reactions toward phenols and hydrocarbons. We have replaced the central pyridine ligand with an N-heterocyclic carbene carbene to probe its effect in both stabilizing the high-valent Ni(III) state and its ability to initiate CPET reactions. We report a monomeric carbene-diamide-based Ni(II)-fluoride pincer complex that was characterized through 1H/19F NMR, mass spectrometry, UV-vis, and X-ray crystallography analysis. Although carbenes and deprotonated carboxamides in the Ni(II)-fluoride complex are expected to stabilize the Ni(III) state upon oxidation, the Ni(III)/Ni(II) redox process occurred at very high potential (0.87 V vs Fc+/Fc, dichloromethane) and was irreversible. Structural studies indicate significant distortion in the imidazolium "NCN" carbene plane of Ni(II)-fluoride caused by the formation of six-membered metallacycles. The high-valent NiIII-fluoride analogue was synthesized by the addition of 1.0 equiv CTAN (ceric tetrabutylammonium nitrate) in dichloromethane at -20 °C which was characterized by UV-vis, mass spectrometry, and EPR spectroscopy. Density functional theory studies indicate that the Ni-carbene bond elongated, while the Ni-F bond shortened upon oxidation to the Ni(III) species. The high-valent Ni(III)-fluoride was found to react with the substituted phenols. Analysis of the KIE and linear free energy relationship correlates well with the CPET nature of the reaction. Preliminary analysis indicates that the CPET is asynchronous and is primarily driven by the E0' of the Ni(III)-fluoride complex.

2.
Chem Commun (Camb) ; 59(19): 2755-2758, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36779358

RESUMO

An oxoiron(IV) cation radical is generated upon two-electron oxidation of an iron(III) complex bearing an electron-rich methoxy substituted bTAML framework and thoroughly characterized via multiple spectroscopic techniques and density functional theory (DFT). Reactivity studies demonstrate faster rates for oxidation of strong aliphatic sp3 C-H bonds than for its corresponding oxoiron(V) valence tautomer.

3.
Faraday Discuss ; 234(0): 42-57, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35174376

RESUMO

An efficient electrochemical method for the selective oxidation of alcohols to their corresponding aldehydes/ketones using a biomimetic iron complex, [(bTAML)FeIII-OH2]-, as the redox mediator in an undivided electrochemical cell with inexpensive carbon and nickel electrodes using water as an oxygen source is reported. The substrate scope also includes alcohols that contain O and N heteroatoms in the scaffold, which are well tolerated under these reaction conditions. Mechanistic studies show the involvement of a high-valent FeV(O) species, [(bTAML)FeV(O)]-, formed via PCET (overall 2H+/2e-) from [(bTAML)FeIII-OH2]- at 0.77 V (vs. Fc+/Fc). Moreover, electrokinetic studies of the oxidation of C-H bonds indicate a second-order reaction, with the C-H abstraction by FeV(O) being the rate-determining step. The overall mechanism, studied using linear free energy relationships and radical clocks, indicates a "net hydride" transfer, leading to the oxidation of the alcohol to the corresponding aldehyde or ketone. When the reaction was carried out at pH > 11, the reaction could be carried out at a ∼500 mV lower potential than that at pH 8, albeit with reduced reaction rates. The reactive intermediate involved at pH > 11 is the corresponding one-electron oxidized [(bTAML)FeIV(O)]2- species.


Assuntos
Ferro , Oxigênio , Álcoois , Elétrons , Ferro/química , Oxirredução , Oxigênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...