Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 43(8): 1455-1477, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37345524

RESUMO

BACKGROUND: Collateral arteries act as natural bypasses which reroute blood flow to ischemic regions and facilitate tissue regeneration. In an injured heart, neonatal artery endothelial cells orchestrate a systematic series of cellular events, which includes their outward migration, proliferation, and coalescence into fully functional collateral arteries. This process, called artery reassembly, aids complete cardiac regeneration in neonatal hearts but is absent in adults. The reason for this age-dependent disparity in artery cell response is completely unknown. In this study, we investigated if regenerative potential of coronary arteries is dictated by their ability to dedifferentiate. METHODS: Single-cell RNA sequencing of coronary endothelial cells was performed to identify differences in molecular profiles of neonatal and adult endothelial cells in mice. Findings from this in silico analyses were confirmed with in vivo experiments using genetic lineage tracing, whole organ immunostaining, confocal imaging, and cardiac functional assays in mice. RESULTS: Upon coronary occlusion, neonates showed a significant increase in actively cycling artery cells and expressed prominent dedifferentiation markers. Data from in silico pathway analyses and in vivo experiments suggested that upon myocardial infarction, cell cycle reentry of preexisting neonatal artery cells, the subsequent collateral artery formation, and recovery of cardiac function are dependent on arterial VegfR2 (vascular endothelial growth factor receptor-2). This subpopulation of dedifferentiated and proliferating artery cells was absent in nonregenerative postnatal day 7 or adult hearts. CONCLUSIONS: These data indicate that adult artery endothelial cells fail to drive collateral artery development due to their limited ability to dedifferentiate and proliferate.


Assuntos
Células Endoteliais , Fator A de Crescimento do Endotélio Vascular , Animais , Camundongos , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Circulação Colateral/fisiologia , Vasos Coronários/metabolismo , Proliferação de Células
2.
Sci Adv ; 8(45): eabm3548, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36351009

RESUMO

Metastasis is responsible for most breast cancer-related deaths; however, identifying the cellular determinants of metastasis has remained challenging. Here, we identified a minority population of immature THY1+/VEGFA+ tumor epithelial cells in human breast tumor biopsies that display angiogenic features and are marked by the expression of the oncogene, LMO2. Higher abundance of LMO2+ basal cells correlated with tumor endothelial content and predicted poor distant recurrence-free survival in patients. Using MMTV-PyMT/Lmo2CreERT2 mice, we demonstrated that Lmo2 lineage-traced cells integrate into the vasculature and have a higher propensity to metastasize. LMO2 knockdown in human breast tumors reduced lung metastasis by impairing intravasation, leading to a reduced frequency of circulating tumor cells. Mechanistically, we find that LMO2 binds to STAT3 and is required for STAT3 activation by tumor necrosis factor-α and interleukin-6. Collectively, our study identifies a population of metastasis-initiating cells with angiogenic features and establishes the LMO2-STAT3 signaling axis as a therapeutic target in breast cancer metastasis.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Feminino , Neoplasias da Mama/patologia , Neoplasias Pulmonares/metabolismo , Transdução de Sinais , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo
3.
Development ; 149(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34910127

RESUMO

Although Wnt signaling is clearly important for the intestinal epithelial homeostasis, the relevance of various sources of Wnt ligands themselves remains incompletely understood. Blocking the release of Wnt in distinct stromal cell types suggests obligatory functions of several stromal cell sources and yields different observations. The physiological contribution of epithelial Wnt to tissue homeostasis remains unclear. We show here that blocking epithelial Wnts affects colonic Reg4+ epithelial cell differentiation and impairs colonic epithelial regeneration after injury in mice. Single-cell RNA analysis of intestinal stroma showed that the majority of Wnt-producing cells were contained in transgelin (Tagln+) and smooth muscle actin α2 (Acta2+) expressing populations. We genetically attenuated Wnt production from these stromal cells using Tagln-Cre and Acta2-CreER drivers, and found that blockage of Wnt release from either epithelium or Tagln+ and Acta2+ stromal cells impaired colonic epithelial healing after chemical-induced injury. Aggregated blockage of Wnt release from both epithelium and Tagln+ or Acta2+ stromal cells drastically diminished epithelial repair, increasing morbidity and mortality. These results from two uncharacterized stromal populations suggested that colonic recovery from colitis-like injury depends on multiple Wnt-producing sources.


Assuntos
Actinas/metabolismo , Colite Ulcerativa/metabolismo , Mucosa Intestinal/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Proteína Wnt3A/metabolismo , Cicatrização , Actinas/genética , Animais , Células Cultivadas , Colo/citologia , Colo/metabolismo , Colo/fisiologia , Mucosa Intestinal/citologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Proteínas Musculares/genética , Proteínas Associadas a Pancreatite/genética , Proteínas Associadas a Pancreatite/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Células-Tronco/metabolismo , Proteína Wnt3A/genética
4.
Curr Cardiol Rep ; 23(4): 30, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33655379

RESUMO

PURPOSE OF REVIEW: Collateral arteries create artery-artery anastomoses that could serve as natural bypasses that in the heart could relieve the various complications of ischemia heart disease. Recent work using animal models have begun to reveal details of how coronary collateral arteries form. RECENT FINDINGS: Mouse genetics has been used to study the cellular and molecular mechanisms of collateral artery development. Collateral arteries are not pre-existing in the mouse heart, and only form in response to injury. Myocardial infarction creates tissue hypoxia that triggers the expression of growth factors and chemokines that guide collaterogenesis. Collateral development is more robust in neonatal hearts when compared with adults, and contributes to neonatal heart regeneration. The identification of signaling pathways and cellular responses underlying coronary collateral artery development suggests potential translational strategies. Continued investigation into this subject could lead to the identification of targetable pathways that induce collateral arteries for cardiac revascularization.


Assuntos
Circulação Colateral , Doença da Artéria Coronariana , Animais , Coração , Humanos , Camundongos , Neovascularização Fisiológica
5.
J Biol Chem ; 296: 100488, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33662399

RESUMO

Differentiation of mesenchymal stem cells into adipocyte requires coordination of external stimuli and depends upon the functionality of the primary cilium. The Rab8 small GTPases are regulators of intracellular transport of membrane-bound structural and signaling cargo. However, the physiological contribution of the intrinsic trafficking network controlled by Rab8 to mesenchymal tissue differentiation has not been fully defined in vivo and in primary tissue cultures. Here, we show that mouse embryonic fibroblasts (MEFs) lacking Rab8 have severely impaired adipocyte differentiation in vivo and ex vivo. Immunofluorescent localization and biochemical analyses of Rab8a-deficient, Rab8b-deficient, and Rab8a and Rab8b double-deficient MEFs revealed that Rab8 controls the Lrp6 vesicular compartment, clearance of basal signalosome, traffic of frizzled two receptor, and thereby a proper attenuation of Wnt signaling in differentiating MEFs. Upon induction of adipogenesis program, Rab8a- and Rab8b-deficient MEFs exhibited severely defective lipid-droplet formation and abnormal cilia morphology, despite overall intact cilia growth and ciliary cargo transport. Our results suggest that intracellular Rab8 traffic regulates induction of adipogenesis via proper positioning of Wnt receptors for signaling control in mesenchymal cells.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Via de Sinalização Wnt , Proteínas rab de Ligação ao GTP/metabolismo , Adipogenia/fisiologia , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Cílios/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Camundongos , Camundongos Knockout , Proteínas rab de Ligação ao GTP/genética
6.
Cell ; 176(5): 1128-1142.e18, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30686582

RESUMO

Collateral arteries are an uncommon vessel subtype that can provide alternate blood flow to preserve tissue following vascular occlusion. Some patients with heart disease develop collateral coronary arteries, and this correlates with increased survival. However, it is not known how these collaterals develop or how to stimulate them. We demonstrate that neonatal mouse hearts use a novel mechanism to build collateral arteries in response to injury. Arterial endothelial cells (ECs) migrated away from arteries along existing capillaries and reassembled into collateral arteries, which we termed "artery reassembly". Artery ECs expressed CXCR4, and following injury, capillary ECs induced its ligand, CXCL12. CXCL12 or CXCR4 deletion impaired collateral artery formation and neonatal heart regeneration. Artery reassembly was nearly absent in adults but was induced by exogenous CXCL12. Thus, understanding neonatal regenerative mechanisms can identify pathways that restore these processes in adults and identify potentially translatable therapeutic strategies for ischemic heart disease.


Assuntos
Circulação Colateral/fisiologia , Coração/crescimento & desenvolvimento , Regeneração/fisiologia , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Quimiocina CXCL12/metabolismo , Vasos Coronários/crescimento & desenvolvimento , Células Endoteliais/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/fisiologia , Receptores CXCR4/metabolismo , Transdução de Sinais
7.
Dev Dyn ; 246(4): 328-335, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28097739

RESUMO

Knowledge on cellular differentiation pathways is critical to understanding organ development, homeostasis, and disease. Studying cell differentiation and cell fate restrictions in these contexts can be done through lineage tracing experiments, which entail permanent labeling of a cell and all its progeny. Recent lineage experiments within the cardiovascular system have uncovered unexpected findings on cellular origins during organogenesis and cell plasticity during disease. For example, there is increasing evidence that multiple progenitor sources exist for a single cell type, and that cells have remarkable expansive capacities under disease settings. Here, we summarize some recent findings in the cardiovascular system and highlight where there is evidence that the underlying concepts are a widespread phenomenon used by other organ systems. Developmental Dynamics 246:328-335, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Doenças Cardiovasculares/patologia , Sistema Cardiovascular/crescimento & desenvolvimento , Plasticidade Celular/fisiologia , Animais , Diferenciação Celular , Linhagem da Célula , Humanos , Organogênese , Células-Tronco/citologia
8.
Development ; 142(12): 2147-62, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26015543

RESUMO

Communication between stem and niche supporting cells maintains the homeostasis of adult tissues. Wnt signaling is a crucial regulator of the stem cell niche, but the mechanism that governs Wnt ligand delivery in this compartment has not been fully investigated. We identified that Wnt secretion is partly dependent on Rab8a-mediated anterograde transport of Gpr177 (wntless), a Wnt-specific transmembrane transporter. Gpr177 binds to Rab8a, depletion of which compromises Gpr177 traffic, thereby weakening the secretion of multiple Wnts. Analyses of generic Wnt/ß-catenin targets in Rab8a knockout mouse intestinal crypts indicate reduced signaling activities; maturation of Paneth cells - a Wnt-dependent cell type - is severely affected. Rab8a knockout crypts show an expansion of Lgr5(+) and Hopx(+) cells in vivo. However, in vitro, the knockout enteroids exhibit significantly weakened growth that can be partly restored by exogenous Wnts or Gsk3ß inhibitors. Immunogold labeling and surface protein isolation identified decreased plasma membrane localization of Gpr177 in Rab8a knockout Paneth cells and fibroblasts. Upon stimulation by exogenous Wnts, Rab8a-deficient cells show ligand-induced Lrp6 phosphorylation and transcriptional reporter activation. Rab8a thus controls Wnt delivery in producing cells and is crucial for Paneth cell maturation. Our data highlight the profound tissue plasticity that occurs in response to stress induced by depletion of a stem cell niche signal.


Assuntos
Celulas de Paneth/citologia , Nicho de Células-Tronco/fisiologia , Células-Tronco/citologia , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta , Proteínas de Homeodomínio/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Camundongos Knockout , Fosforilação , Receptores Acoplados a Proteínas G/metabolismo , Ativação Transcricional , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Proteínas rab de Ligação ao GTP/genética
9.
Cancer Res ; 74(19): 5480-92, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25113996

RESUMO

Mutations in the APC or ß-catenin genes are well-established initiators of colorectal cancer, yet modifiers that facilitate the survival and progression of nascent tumor cells are not well defined. Using genetic and pharmacologic approaches in mouse colorectal cancer and human colorectal cancer xenograft models, we show that incipient intestinal tumor cells activate CDC42, an APC-interacting small GTPase, as a crucial step in malignant progression. In the mouse, Cdc42 ablation attenuated the tumorigenicity of mutant intestinal cells carrying single APC or ß-catenin mutations. Similarly, human colorectal cancer with relatively higher levels of CDC42 activity was particularly sensitive to CDC42 blockade. Mechanistic studies suggested that Cdc42 may be activated at different levels, including at the level of transcriptional activation of the stem cell-enriched Rho family exchange factor Arhgef4. Our results indicate that early-stage mutant intestinal epithelial cells must recruit the pleiotropic functions of Cdc42 for malignant progression, suggesting its relevance as a biomarker and therapeutic target for selective colorectal cancer intervention.


Assuntos
Neoplasias Colorretais/patologia , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Progressão da Doença , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , beta Catenina/genética , beta Catenina/metabolismo
10.
EMBO J ; 33(17): 1882-95, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25063677

RESUMO

Compartmentalization of Toll-like receptors (TLRs) in intestinal epithelial cells (IECs) regulates distinct immune responses to microbes; however, the specific cellular machinery that controls this mechanism has not been fully identified. Here we provide genetic evidences that the recycling endosomal compartment in enterocytes maintains a homeostatic TLR9 intracellular distribution, supporting mucosal tolerance to normal microbiota. Genetic ablation of a recycling endosome resident small GTPase, Rab11a, a gene adjacent to a Crohn's disease risk locus, in mouse IECs and in Drosophila midgut caused epithelial cell-intrinsic cytokine production, inflammatory bowel phenotype, and early mortality. Unlike wild-type controls, germ-free Rab11a-deficient mouse intestines failed to tolerate the intraluminal stimulation of microbial agonists. Thus, Rab11a endosome controls intestinal host-microbial homeostasis at least partially via sorting TLRs.


Assuntos
Proteínas de Drosophila/metabolismo , Endossomos/metabolismo , Enterócitos/imunologia , Enterócitos/microbiologia , Microbiota/imunologia , Receptor Toll-Like 9/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/imunologia , Endossomos/imunologia , Deleção de Genes , Homeostase , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Camundongos , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Receptor Toll-Like 9/imunologia , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/imunologia
11.
J Clin Invest ; 122(3): 1052-65, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22354172

RESUMO

The constant self renewal and differentiation of adult intestinal stem cells maintains a functional intestinal mucosa for a lifetime. However, the molecular mechanisms that regulate intestinal stem cell division and epithelial homeostasis are largely undefined. We report here that the small GTPases Cdc42 and Rab8a are critical regulators of these processes in mice. Conditional ablation of Cdc42 in the mouse intestinal epithelium resulted in the formation of large intracellular vacuolar structures containing microvilli (microvillus inclusion bodies) in epithelial enterocytes, a phenotype reminiscent of human microvillus inclusion disease (MVID), a devastating congenital intestinal disorder that results in severe nutrient deprivation. Further analysis revealed that Cdc42-deficient stem cells had cell division defects, reduced capacity for clonal expansion and differentiation into Paneth cells, and increased apoptosis. Cdc42 deficiency impaired Rab8a activation and its association with multiple effectors, and prevented trafficking of Rab8a vesicles to the midbody. This impeded cytokinesis, triggering crypt apoptosis and disrupting epithelial morphogenesis. Rab8a was also required for Cdc42-GTP activity in the intestinal epithelium, where continued cell division takes place. Furthermore, mice haploinsufficient for both Cdc42 and Rab8a in the intestine demonstrated abnormal crypt morphogenesis and epithelial transporter physiology, further supporting their functional interaction. These data suggest that defects of the stem cell niche can cause MVID. This hypothesis represents a conceptual departure from the conventional view of this disease, which has focused on the affected enterocytes, and suggests stem cell-based approaches could be beneficial to infants with this often lethal condition.


Assuntos
Regulação da Expressão Gênica , Intestinos/citologia , Células-Tronco/citologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Transporte Biológico , Ciclo Celular , Diferenciação Celular , Sobrevivência Celular , Células HeLa , Humanos , Mucosa Intestinal/metabolismo , Camundongos , Modelos Biológicos , Modelos Genéticos , Fenótipo
12.
Front Biol (Beijing) ; 7(6): 587-593, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23439944

RESUMO

Throughout the animal kingdom, Wnt-triggered signal transduction pathways play fundamental roles in embryonic development and tissue homeostasis. Wnt proteins are modified as glycolipoproteins and are secreted into the extracellular environment as morphogens. Recent studies on the intracellular trafficking of Wnt proteins demonstrate multiple layers of regulation along its secretory pathway. These findings have propelled a great deal of interest among researchers to further investigate the molecular mechanisms that control the release of Wnts and hence the level of Wnt signaling. This review is dedicated to Wntless, a putative G-protein coupled receptor that transports Wnts intracellularly for secretion. Here, we highlight the conclusions drawn from the most recent cellular, molecular and genetic studies that affirm the role of Wntless in the secretion of Wnt proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...