Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; PP2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39316484

RESUMO

Recent advances in low-power wireless-capable system-on-chips (SoCs) have accelerated diverse Internet of Things (IoT) applications, encompassing wearables, asset monitoring, and more. Concurrently, the field of neuroimaging has experienced escalating demand for lightweight, untethered, low-power systems capable of imaging in small animals. This article explores the feasibility of using a low-power asset monitoring system as the basis of a new architecture for fluorescence and hemodynamic contrast-based wireless functional imaging. The core system architecture hinges on the fusion of a Bluetooth Low Energy (BLE) 5.2 SoC and a low-power 560×560, 8-bit monochrome CMOS image sensor module. Successful integration of a multicontrast optical front-end consisting of a fluorescence channel (FL) and an intrinsic optical signal (IOS) channel resulted in the creation of a wireless microscope called 'BLEscope'. Next, we developed a wireless (i.e. BLE) protocol to remotely operate the BLEscope via a laptop and acquire in vivo images at 1 frame per second (fps). We then conducted a comprehensive characterization of the BLEscope to assess its optical capabilities and power consumption. We report a new benchmark for continuous wireless imaging of ∼1.5 hours with a 100 mAh battery. Via the FL channel of the BLEscope, we successfully tracked the kinetics of an intravenously injected fluorescent tracer and acquired images of fluorescent brain tumor cells in vivo. Via the IOS channel, we characterized the differential response of normal and tumor-associated blood vessels to a carbogen gas inhalation challenge. When miniaturized, the BLEscope will result in a new class of low-power, implantable or wireless microscopes that could transform preclinical and clinical neuroimaging applications.

2.
Environ Monit Assess ; 195(12): 1472, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37964072

RESUMO

This study focuses on assessing hydrochemical characteristics and non-carcinogenic health risks associated with fluoride contamination in groundwater within the Palacode and Pennagaram taluks of Dharmapuri district. The presence of fluoride in drinking water is a significant concern due to its potential health impacts on both adults and children. We collected a total of 158 groundwater samples during both the summer (SUM) and monsoon (MON) seasons in 2021 to evaluate the suitability of water for drinking purposes in this region. During the SUM season, groundwater exhibits alkaline characteristics with a pH range of 6.70 to 8.73 and a mean value of 7.43, while the MON season falls within the neutral pH range with values ranging from 6.60 to 7.60 and a mean of 7.00. Hydrogeochemical analysis reveals that fluoride concentrations during the SUM season range from 0.13 to 2.7 mg/L, with a mean of 0.82 mg/L, whereas the MON season exhibits concentrations ranging from 0.08 to 1.6 mg/L, with a mean of 0.5 mg/L. Spatial distribution analysis indicates a gradual increase in fluoride concentrations from the northeast to the central and southern parts of the study area during both seasons. Residents in these areas have been exposed to high fluoride levels for an extended period, leading to health issues related to fluorosis. Our hydrogeochemical analysis attributes fluoride dominance to the Cl--SO42- water type in both seasons. Furthermore, the relationship between fluoride and pH, HCO3-, Ca2+, and Na+ suggests the influence of geological factors in fluoride dissolution under alkaline conditions, while a reverse cation exchange process and increasing calcium concentration inhibit fluoride concentration. Saturation indices indicate that the unsaturated state of gypsum dissolution contributes to elevated fluoride levels in groundwater. Additionally, Gibbs plots highlight rock-water interactions as a significant factor influencing groundwater chemistry in the study area. Based on our hazard quotient (HQ) investigation, children are at a higher risk during both seasons compared to adults, with the central and northern regions showing alarming HQ values. These findings underscore the urgent need for enhanced groundwater quality monitoring and a comprehensive assessment of health risks, providing valuable insights for groundwater safety management in vulnerable areas of this region.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Criança , Adulto , Humanos , Fluoretos/análise , Monitoramento Ambiental , Índia , Poluentes Químicos da Água/análise , Água Subterrânea/análise , Água Potável/análise , Medição de Risco , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA