Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 945: 173911, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38889823

RESUMO

Climate change and anthropogenic activities have influenced the frequency and magnitude of forest fires both globally and regionally. While skilful short- to extended-range prediction of forest fires is essential for effective mitigation in local communities, it is also important to identify the implications of forest fires on different sectors, including water resources and sustainable development. Limited studies have investigated the association between forest fires and hydrometeorological variables at the regional scale in developing countries due to the lack of necessary datasets, which can now be leveraged using the newly hosted global reanalysis of fire danger indices (referred to as fire indices). The current study presents a comprehensive analysis of the spatio-temporal variations of eight fire indices across India, as well as their association with hydro-meteorological variables, such as precipitation, temperature, and the streamflow of a major river basin (Mahanadi) in India. The accuracy of these indices in capturing real fire events and the potential benefit of incorporating fire indices into long-term hydrologic simulations are also explored. The results show that fire indices can accurately yield fire seasons (i.e., post-monsoon and summer) in India. Furthermore, forest fires are found to be strongly associated with hydro-meteorological variables, typically resulting in low streamflow regimes. Fire indices can also capture actual fire events, maintaining high scalar accuracy. Finally, an improvement in uncalibrated hydrologic model simulations is observed when simulated streamflow is post-processed using the fire indices as predictors. Overall, the current study has valuable implications for fire indices forecasting and hydrologic simulations in ungauged basins.

2.
Sci Rep ; 9(1): 7011, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31065036

RESUMO

Popular perception claims that rain following a hot day brings relief, indicating a bio-meteorological perspective of 'rainy' forecasts. However, the hypothesis has rarely been examined on India which experiences distinct pre- and post-monsoon seasons with continuous dry days, occasionally interrupted by thunderstorms or cyclones. The current study analyzes 54 years of observed daily meteorological records across India to assess the impact of shower effect, defined as the amount of change in the temperature on the first day of a wet spell that succeeds a dry spell. Nine combinations of low to high probability rainfall events on the first day of a wet spell and short to prolonged dry spell categories are evaluated. Results indicate that the north, the northeastern, and the eastern states of India witness a decrease in the maximum and minimum temperatures, up to 5 °C during the pre-monsoon season while mostly exhibiting a statistically insignificant long-term temporal trend. During the post-monsoon season, a rainfall event decreases the maximum temperature, providing significant relief by reducing the heat index (HI) warning from 'Caution' to 'Normal', but is unable to lower the HI warning from 'danger' during the pre-monsoon season.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...