Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 12(1): e0170333, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28099529

RESUMO

Each cycle of translation initiation in bacterial cell requires free 50S and 30S ribosomal subunits originating from the post-translational dissociation of 70S ribosome from the previous cycle. Literature shows stable dissociation of 70S from model post-termination complexes by the concerted action of Ribosome Recycling Factor (RRF) and Elongation Factor G (EF-G) that interact with the rRNA bridge B2a/B2b joining 50S to 30S. In such experimental models, the role of full-length nascent protein was never considered seriously. We observed relatively slow release of full-length nascent protein from 50Sof post translation ribosome, and in that process, its toe prints on the rRNA in vivo and in in vitro translation with E.coli S30 extract. We reported earlier that a number of chemically unfolded proteins like bovine carbonic anhydrase (BCA), lactate dehydrogenase (LDH), malate dehydrogenase (MDH), lysozyme, ovalbumin etc., when added to free 70Sin lieu of the full length nascent proteins, also interact with identical RNA regions of the 23S rRNA. Interestingly the rRNA nucleotides that slow down release of the C-terminus of full-length unfolded protein were found in close proximity to the B2a/B2b bridge. It indicated a potentially important chemical reaction conserved throughout the evolution. Here we set out to probe that conserved role of unfolded protein conformation in splitting the free or post-termination 70S. How both the RRF-EFG dependent and the plausible nascent protein-EFG dependent ribosome recycling pathways might be relevant in bacteria is discussed here.


Assuntos
Escherichia coli/metabolismo , Iniciação Traducional da Cadeia Peptídica/fisiologia , Terminação Traducional da Cadeia Peptídica/fisiologia , Biossíntese de Proteínas/fisiologia , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Animais , Anidrases Carbônicas/metabolismo , Bovinos , Embrião de Galinha , Escherichia coli/genética , L-Lactato Desidrogenase/metabolismo , Malato Desidrogenase/metabolismo , Muramidase/metabolismo , Ovalbumina/metabolismo , Fator G para Elongação de Peptídeos/metabolismo , Dobramento de Proteína , Proteínas Ribossômicas/metabolismo , Suínos
2.
J Biol Chem ; 288(26): 19081-9, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23673663

RESUMO

Domain V of the 23S/25S/28S rRNA of the large ribosomal subunit constitutes the active center for the protein folding activity of the ribosome (PFAR). Using in vitro transcribed domain V rRNAs from Escherichia coli and Saccharomyces cerevisiae as the folding modulators and human carbonic anhydrase as a model protein, we demonstrate that PFAR is conserved from prokaryotes to eukaryotes. It was shown previously that 6-aminophenanthridine (6AP), an antiprion compound, inhibits PFAR. Here, using UV cross-linking followed by primer extension, we show that the protein substrates and 6AP interact with a common set of nucleotides on domain V of 23S rRNA. Mutations at the interaction sites decreased PFAR and resulted in loss or change of the binding pattern for both the protein substrates and 6AP. Moreover, kinetic analysis of human carbonic anhydrase refolding showed that 6AP decreased the yield of the refolded protein but did not affect the rate of refolding. Thus, we conclude that 6AP competitively occludes the protein substrates from binding to rRNA and thereby inhibits PFAR. Finally, we propose a scheme clarifying the mechanism by which 6AP inhibits PFAR.


Assuntos
Fenantridinas/farmacologia , Príons/química , Dobramento de Proteína/efeitos dos fármacos , Ribossomos/química , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Ligação Competitiva , Anidrases Carbônicas/química , Escherichia coli/metabolismo , Humanos , Chaperonas Moleculares/química , Dados de Sequência Molecular , Mutagênese , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , Desnaturação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Ribossômico/química , Homologia de Sequência de Aminoácidos
3.
J Biol Chem ; 287(44): 37508-21, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22932895

RESUMO

A distinct three-dimensional shape of rRNA inside the ribosome is required for the peptidyl transfer activity of its peptidyltransferase center (PTC). In contrast, even the in vitro transcribed PTC RNA interacts with unfolded protein(s) at about five sites to let them attain their native states. We found that the same set of conserved nucleotides in the PTC interact identically with nascent and chemically unfolded proteins in vivo and in vitro, respectively. The time course of this interaction, difficult to follow in vivo, was observed in vitro. It suggested nucleation of folding of cytosolic globular proteins vectorially from hydrophilic N to hydrophobic C termini, consistent with our discovery of a regular arrangement of cumulative hydrophobic indices of the peptide segments of cytosolic proteins from N to C termini. Based on this observation, we propose a model here for the nucleation of folding of the nascent protein chain by the PTC.


Assuntos
Escherichia coli/metabolismo , Biossíntese de Proteínas , Dobramento de Proteína , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Escherichia coli/enzimologia , Humanos , Cinética , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Peptidil Transferases/metabolismo , Ligação Proteica , Estabilidade Proteica , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Ribossômico/química , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/química , Ribossomos/química , Ribossomos/metabolismo , Termodinâmica
4.
J Biol Chem ; 286(51): 43771-43781, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22020935

RESUMO

The peptidyl transferase center of the domain V of large ribosomal RNA in the prokaryotic and eukaryotic cytosolic ribosomes acts as general protein folding modulator. We showed earlier that one part of the domain V (RNA1 containing the peptidyl transferase loop) binds unfolded protein and directs it to a folding competent state (FCS) that is released by the other part (RNA2) to attain the folded native state by itself. Here we show that the peptidyl transferase loop of the mitochondrial ribosome releases unfolded proteins in FCS extremely slowly despite its lack of the rRNA segment analogous to RNA2. The release of FCS can be hastened by the equivalent activity of RNA2 or the large subunit proteins of the mitochondrial ribosome. The RNA2 or large subunit proteins probably introduce some allosteric change in the peptidyl transferase loop to enable it to release proteins in FCS.


Assuntos
Mitocôndrias/metabolismo , RNA Ribossômico/genética , Ribossomos/metabolismo , Sítio Alostérico , Sequência de Aminoácidos , Animais , Bovinos , DNA Mitocondrial/metabolismo , Escherichia coli/metabolismo , Humanos , Leishmania/metabolismo , Mitocôndrias Hepáticas/metabolismo , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA/química , RNA Ribossômico/metabolismo , Ribossomos/química , Homologia de Sequência de Aminoácidos
5.
Biotechnol J ; 3(8): 999-1009, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18702035

RESUMO

In all organisms, the ribosome synthesizes and folds full length polypeptide chains into active three-dimensional conformations. The nascent protein goes through two major interactions, first with the ribosome which synthesizes the polypeptide chain and holds it for a considerable length of time, and then with the chaperones. Some of the chaperones are found in solution as well as associated to the ribosome. A number of in vitro and in vivo experiments revealed that the nascent protein folds through specific interactions of some amino acids with the nucleotides in the peptidyl transferase center (PTC) in the large ribosomal subunit. The mechanism of this folding differs from self-folding. In this article, we highlight the folding of nascent proteins on the ribosome and the influence of chaperones etc. on protein folding.


Assuntos
Modelos Biológicos , Modelos Químicos , Proteínas/química , Proteínas/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Simulação por Computador , Modelos Moleculares , Conformação Proteica , Proteínas/ultraestrutura , Ribossomos/ultraestrutura
6.
Eur J Biochem ; 269(15): 3856-66, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12153583

RESUMO

Porcine heart cytoplasmic malate dehydrogenase (s-MDH) is a dimeric protein (2 x 35 kDa). We have studied equilibrium unfolding and refolding of s-MDH using activity assay, fluorescence, far-UV and near-UV circular dichroism (CD) spectroscopy, hydrophobic probe-1-anilino-8-napthalene sulfonic acid binding, dynamic light scattering, and chromatographic (HPLC) techniques. The unfolding and refolding transitions are reversible and show the presence of two equilibrium intermediate states. The first one is a compact monomer (MC) formed immediately after subunit dissociation and the second one is an expanded monomer (ME), which is little less compact than the native monomer and has most of the characteristic features of a 'molten globule' state. The equilibrium transition is fitted in the model: 2U <--> 2M(E) <--> 2M(C) <--> D. The time course of kinetics of self- refolding of s-MDH revealed two parallel folding pathways [Rudolph, R., Fuchs, I. & Jaenicke, R. (1986) Biochemistry 25, 1662-1669]. The major pathway (70%) is 2U-->2M*-->2M-->D, the rate limiting step being the isomerization of the monomers (K1 = 1.7 x 10(-3) s(-1)). The minor pathway (30%) involves an association step leading to the incorrectly folding dimers, prior to the very slow D*-->D folding step. In this study, we have characterized the folding-assembly pathway of dimeric s-MDH. Our kinetic and equilibrium experiments indicate that the folding of s-MDH involves the formation of two folding intermediates. However, whether the equilibrium intermediates are equivalent to the kinetic ones is beyond the scope of this study.


Assuntos
Citoplasma/enzimologia , Malato Desidrogenase/química , Malato Desidrogenase/metabolismo , Dobramento de Proteína , Naftalenossulfonato de Anilina/química , Naftalenossulfonato de Anilina/metabolismo , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Fluorescência , Guanidina , Cinética , Luz , Desnaturação Proteica , Espalhamento de Radiação , Espectrofotometria Ultravioleta/métodos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...